
Sumit Nigam
Consultant Engineer
EMC Corporation
Sumit.Nigam@EMC.com

TROUBLESHOOTING JAVA ON LINUX

2014 EMC Proven Professional Knowledge Sharing 2

Table of Contents
Why is effective and efficient troubleshooting important? ... 4

Why is troubleshooting difficult? ... 5

Troubleshooting ... 6

Load and CPU Usage ... 6

Java Thread dumps .. 8

High CPU usage ... 9

Garbage Collection issues ...11

Heap dump ..17

Deadlock detection and lock contention ...18

Virtual Memory ..20

Connection problems ...22

Context Switching ..26

CPU affinity ...28

I/O Subsystem ...29

Thread Names ...32

File descriptors ..32

Tempfs and ramfs ...33

Application logging ..33

Virtualization ..34

System level tracing ..36

Crash analysis ...39

HotSpot Compilation ..41

Linux Kernel Profiling ...42

Monitoring ...44

OS specific ..44

Application specific ..44

2014 EMC Proven Professional Knowledge Sharing 3

Troubleshooting Checklist ...49

Conclusion ..51

References ...52

Disclaimer: The views, processes, or methodologies published in this article are those of the

author. They do not necessarily reflect EMC Corporation’s views, processes, or methodologies.

2014 EMC Proven Professional Knowledge Sharing 4

Why is effective and efficient troubleshooting important?

Seasoned programmers will agree with Murphy’s Law; when left to themselves, things have a

tendency to go from bad to worse. This Law has a direct bearing upon software application

troubleshooting. According to recent Cambridge University research, the global cost of

debugging software has risen to $312 billion annually1.

A problem may manifest in many forms. It could be a suddenly unresponsive system to a total

application crash. It could be a system running in degraded manner to a system which simply

errors out on every flow. What are the effective means to troubleshoot Java application on

Linux? While, the topic at hand is enormously vast, there exist a lot of useful Linux commands

and tips which every developer must learn to effectively diagnose a problem quickly. This

Knowledge Sharing article will discuss at length commands and tips which can help developers

appreciate the science behind troubleshooting. It is not lack of knowledge that limits us but

inability to apply the same knowledge effectively and correlate application behavior with

operating system (OS) bookkeeping data. We will look at some interesting examples and use

command outputs to indicate how root cause analysis could have been done immediately.

Today, we have software many times more complex than what we wrote a few years back.

Today, we also have computers capable of performing billions of instructions per second.

Troubleshooting is an area which has not got its due. One cannot find a chapter dedicated to

troubleshooting in many of the popular Java books.

No troubleshooting discussion is adequate if it cannot identify ways to effectively monitor for

such occurrences going into the future. An age-old adage fits well here; prevention is better than

cure. Thus, the article concludes with some good remedial measures to address the problems

and good application monitoring strategies to help troubleshoot better and faster.

2014 EMC Proven Professional Knowledge Sharing 5

Why is troubleshooting difficult?

This is a good question to ask at the beginning of every software development especially in the

context of applications being developed. Asking such a question allows one to identify key areas

where a given application may pose challenges when deployed in production.

What makes troubleshooting difficult is partly because of little thought is given to it during the

construction of software. Another aspect which makes it difficult is the unknown. This implies all

such cases which do not directly impact the application but can still cause considerable

deterioration to the application at runtime. These would include aspects such as underlying OS

library issues, network issues leading to stream corruption, third party application update, or

even unresolved bugs in Java virtual machine (JVM) itself.

What also makes the subject difficult is its vastness. Applications may be running on a

virtualized machine (VM). They may have been on an older version of Java or OS. There are a

good number of Linux flavors available and each of them may differ in some aspect or another.

This article will focus on Oracle Java version 1.6 and 1.7 and Red Hat Enterprise Linux (RHEL)

version 2.6. Some of the commands we discuss may require modifications when executed on

other Linux versions and readers are directed to consult appropriate manual (man) pages.

Troubleshooting is also difficult because one can never plan enough. These problems fall under

the same category as those in Mathematics which illustrate that a problem worth attacking

proves it’s worth by attacking back2. Troubleshooting is also a skill which is tougher to acquire

than programming alone. It is similar to detective work3 and that requires both knowledge and

an analytical mind. Coupled with the fact that most production setups will not allow developers

to log in into the system, it makes troubleshooting seemingly a daunting task altogether. Even in

such cases, developers should be able to guide privileged user(s) to collect relevant

information.

By no means can we completely cover the entire troubleshooting landscape for Java

applications deployed on Linux. However, we have aimed to cover the most important and

common aspects.

2014 EMC Proven Professional Knowledge Sharing 6

Troubleshooting

Let us gain some insights into what Java platform offers in troubleshooting space. We will begin

with some tools and they take a deep dive into understanding thread dumps, heap dumps and

garbage collection statistics.

Load and CPU Usage

First of all, how would we know whether our system is overloaded? Linux provides a metric—

called load average4—which measures the amount of load on the system. Load average is such

a misunderstood concept that is worth getting to know better.

A command known as uptime can be executed to find the load average values for the last 1, 5,

and 15 minutes. Load average should always be equated to the number of CPU cores. If the

ratio of load average to the number of cores > 1, then the system is under load and requires

attention.

To know the number of cores we can use /proc file system:

Do note that a few occasional flare-ups in load average are not really alarming. A good way to

monitor load averages would be to keep an eye on the last 5 and 15 minute averages and

taking their ratio with the number of CPU cores. If those values show a high value, there is

reason to be alarmed. It is a good practice to first execute the uptime command before issuing

any other diagnostic command. That would provide us with a good idea of how loaded the

system is and we can avoid issuing commands which can further stress the system.

Linux also provides top command which provides a good indication of CPU utilization. It is a

good idea to consider CPU utilization along with load average values when troubleshooting load

related problems. A usual top command output provides load averages, CPUs, and their

percentage utilization breakup in terms of usage with respect to user processes, system

processes (executing kernel code), waiting for IO operations to complete, interrupt handling,

and CPU time stolen from a virtual machine. Further details contain memory statistics in terms

$ cat /proc/cpuinfo | grep processor | wc -l

24

$ uptime

10:03:28 up 10 days, 1:41, 1 user, load average: 7.04, 11.01, 17.90
The ratio for 15

minutes is 17.90/

24, which is

within reasonable

limits

2014 EMC Proven Professional Knowledge Sharing 7

of total RAM usage, allocation done to buffers, memory allocated to cache, and swap memory

statistics.

The bottom part of top command emits details for each process. These include; its process ID

(PID), user who created it, its priority (PR), its virtual memory (VIRT) image in kb which includes

code, data, shared libraries as well as pages which are swapped out, its resident size in KB

(RES) which is obtained through summation of sizes taken by code and data, its shared

memory size (SHR) which is the amount of memory potentially shared with other processes, its

current state (S), percentage of CPU utilization (%CPU), percentage memory usage (%MEM),

total CPU time consumed since process started (TIME+), and command used to execute it.

There are many more useful fields5 which can be turned ON in top.

Output from top above shows that there are 4 CPUs (numbered Cpu0 to Cpu3). Around 60-70%

overall CPU is used by user (us) processes, which is good because our applications would

usually fall in this category. It is also derivable from this output that our application is running on

a virtualized machine. We will discuss this later in this article when we talk about virtualization.

For now, it will suffice to state that the last column (st) indicates a non-zero value which is

relevant in virtual environments only.

2014 EMC Proven Professional Knowledge Sharing 8

Java Thread dumps

To know the process ID of our Java process, we can either use Linux ps (process status)

command or JVM process status tool jps5 which comes bundled with it. Typing jps at the

command prompt will list process IDs of those Java processes for which the tool has access

permissions.

Issuing a SIGQUIT signal to a Java process whose PID (process identifier) is known will

generate its thread dump. This is done by typing kill –QUIT <PID> at the command prompt.

Alternately, Java platform provides jstack6 command-line utility which attaches to the specified

process and prints the stack traces of all threads that are attached to the JVM. These include

application threads, VM internal threads, and optionally native stack frames. Using jstack, it is

also possible to force (using –F flag) a thread dump of a hung process or when its output has

been redirected such that the dumps are not available through kill –QUIT command.

Thread dumps contain a great amount of information about the current state of the application.

These can be extremely useful in ascertaining a range of possible issues such as high CPU

consumption, thread deadlocks, application slowdown, etc. Thread dump provides information

about a thread state, priority, identifier (nid field), and name besides providing whole stack trace

2014 EMC Proven Professional Knowledge Sharing 9

of its execution path. There is other information as well, such as whether thread is a daemon

thread or not.

Table 1 summarizes the states that a thread can be in:

Thread State Description

NEW The thread has been created but not yet started

RUNNABLE The thread is executing in the JVM

BLOCKED The thread is blocked waiting for a monitor lock

WAITING The thread is waiting indefinitely for another thread to perform some
action. Some good examples would be those threads which indefinitely
execute wait or join indefinitely.

TIMED_WAITING The thread is waiting for another thread to perform a specific action up to a
specified waiting time. Examples would be threads which execute sleep,
or wait and join with time outs, etc.

TERMINATING The thread has completed execution

Table 1: Thread States

Tip: It is a good idea to generate multiple thread dumps separated by some delay. This is

helpful in observing patterns and confirming application behavior across thread dumps. Tools

such as Thread Dump Analyzer8 make it easier to compare thread dumps.

High CPU usage

High CPU usage manifests in many forms. A CPU-bound application may have consumed

excessive CPU cycles. Applications which perform a lot of mathematical computations are in

this category. It is also possible that an application does not perform heavy-duty computations

but has semantics which lead to high-CPU situation. For example, consider a scenario where an

application has a spin-loop through which it attempts to obtain some lock. Spin-locks can

consume CPU cycles at a very high rate. In such scenarios, it is useful to consider placing

breaks in the spin loop. It is also possible that an application suffers from a livelock9 condition.

To understand that our application is suffering from high CPU usage, we first need to take top

output. We must focus on the idle % column to note whether CPU is constantly above 85-90%

CPU utilization or not. A few intermittent spikes are usually not bad and can sometime be

ignored. If CPU utilization is pegged above 85-90%, we need to isolate the root cause(s). Next

step would be to initiate a few thread dumps. In thread dumps, we are only interested in those

2014 EMC Proven Professional Knowledge Sharing 10

threads which are keeping the CPU busy. They can easily be found by looking for those threads

which are in RUNNABLE state. Once we have isolated those threads in thread dump, we can

analyze their stack dumps and focus on those code paths.

It may not be enough to just know all RUNNABLE threads. There may be many threads in

RUNNABLE state. In most cases, it will be important to further isolate those threads which are

indeed consuming a lot of CPU. The top command by default does not display a thread view. It

is possible to get information at thread level by typing capital letter H.

Another command known as ps (process status) provides useful information too. This command

offers a variety of useful information and can be used to find details of each thread to indicate

their process ID (LWP), parent process ID (PPID), elapsed time since the thread was started,

exact start time of thread, percentage CPU utilization, exactly which processor is the thread

executing on, state information, etc.

Let us look at one ps output taken by executing the following command. Older Linux versions

may need ps –emo and pid in place of lwp field.

ps -eLo 'lwp,ppid,cmd,psr,pcpu,etime,start_time,state' | grep java

2014 EMC Proven Professional Knowledge Sharing 11

First, notice the state of each thread as reported in the last column. Since we are interested only

in runnable threads; we focus only on those whose state shows up as ‘R’. Next, we notice that

for some of these running threads, the %CPU column reports a high value (as highlighted in

red). This column is indicative of CPU utilization. We, therefore, need to divert our attention to

only these threads and not all. In effect, this output has helped reduce the scope of our

troubleshooting considerably.

To, summarize, we took thread dumps and made a note of RUNNABLE threads. In parallel, we

also took output from ps command. We filtered out a great number of RUNNABLE threads from

thread dump for our analysis because we were able to find those threads which are consuming

maximum CPU.

Next, we simply correlate this information back with thread dumps. Notice that the first column in

the output above is indicative of light-weight process (LWP) ID and is a numeric field. We may

remember that thread IDs are reported back in hexadecimal as nid field. So, let us take, for

example, LWP for one of these high CPU consuming threads which is 22021. To convert this

into hex should be simple: printf “%x\n” 22021 yields 0x5605. It should be easy to now search

for nid=0x5605 in thread dumps and locate this offending thread in the application.

One may not fail to notice the information that is present in output above. For example, it is easy

to even locate the exact CPU that the offending threads were running on. One may be able to

also correlate this with output of top command which shows CPU-wise utilization. Another

interesting bit above is that of start time which indicates when a given thread was started. It may

be useful information when debugging issues because many threads can surprise by showing

up in dumps when we do not expect them. The output above can clearly point out when a

thread started. This kind of information is not present in thread dumps and correlation with Linux

command becomes essential in such cases. Of course, it is important to have a good grip of

application flows. For example, a long running thread may also be because of a thread pool that

your application chose to use or implement. However, we cannot find how long a thread has

been in present state. A good use in such cases would be application logs, which we cover later

in a section dedicated to them.

Garbage Collection issues

One of the issues that applications usually face is excessive garbage collection (GC). Java

objects are created on heap. Heap memory is divided into young generation and tenured

2014 EMC Proven Professional Knowledge Sharing 12

generation (and two survivor spaces). Newly allocated objects are created in young generation

and objects get promoted to tenured (aka old generation) when garbage collector determines

that they are candidates for long term retention and will not likely be referenced in near future.

When a garbage collector cleans the young generation, it leads to application threads getting

paused. Such a pause is known as partial GC and amounts to a minor pause. When the

garbage collector is unable to clean enough space in young generation, it will be forced to

reclaim space from tenured generation. This amounts to full GC and is also known as major

pause. Applications witness minor pauses and most of the times, they are harmless. A few

major pauses may not be too bad either. However, excessive minor pauses can degrade the

application substantially and we need to ascertain root cause for them as well.

Excessive garbage collection problems manifest in many forms. Some of them would be

degraded application performance, an out of memory error being reported by the application

which indicates that garbage collector was unable to reclaim enough space even after

considerable effort. This “considerable effort” would show up in the form of very high CPU

utilization. Applications may face severe shortage of CPU cycles because most of them are

being used up by garbage collector threads. The out of memory error would be accompanied

with a message that GC overhead limit has been exceeded.

To know that our application is facing garbage collection pause issues, we can again correlate

thread dumps with ps command output. Thread dump also contain details about garbage

collector threads as shown below.

Notice from the dump above that the “VM Thread” is in runnable state and so are GC task

threads. VM Thread performs many operations internal to VM and one of them is garbage

collection. From top (with thread view) or from ps command output we can find whether the

CPU cycles being consumed are used up by GC threads or not.

2014 EMC Proven Professional Knowledge Sharing 13

Once we determine that the excessive GC activity is the root cause of CPU consumption, we

can enable detailed GC output by passing in some flags to the application at its startup.

Here is an explanation of these flags:

verbosegc Enable detailed garbage collection information

-XX:+PrintGCDetails Provides information specific to sizes of young and old
generations before and after GC collections, size of total
heap, time taken to perform GC in both the generations
and size of objects being promoted to old generation

-Xloggc Specify location of garbage collection data log file

XX:+PrintGCApplicationConcurrentTime Amount of time application ran between GC pauses

-XX:+PrintGCApplicationStoppedTime Length of collection pauses

XX:+PrintGCTimeStamps Print GC activity time relative to start of application

GC output obtained in log provided with –Xloggc option can be extremely useful in assessing

frequency of GC and total percentage of time the application was paused. This is useful when

we want to assure that no more than a certain percentage of GC pause time is tolerable. It is

usually a good practice to not have more than 5% of application time being consumed by GC.

The output would also let us know the frequency at which major collections may be occurring.

The output also provides information about each generation size before and after the garbage

collection. This can be extremely useful to see whether collection cycles are really removing

enough garbage or not and if we need to tune our generation sizes.

It may be a good idea to specify pause time and throughput goals for the GC. To specify a

pause time goal, the VM flag -XX:MaxGCPauseMillis can be used. GC will try to keep

application pauses below this threshold. Throughput goal for GC is provided through -

XX:GCTimeRatio flag which specifies ratio of time spent in GC activities to time dedicated to

running the application. It is important to benchmark the application with these options before

deciding upon a value.

 -J-verbosegc -XX:+PrintGCDetails -J -Xloggc:/path/to/gcdata/garbageCollData.txt -

XX:+PrintGCTimeStamps -XX:+PrintGCApplicationConcurrentTime -

XX:+PrintGCApplicationStoppedTime

2014 EMC Proven Professional Knowledge Sharing 14

Another way of causing garbage collection output during the runtime of an application would be

to use JVM tool jstat6. The advantage of using jstat is that it can be used to collect GC data of a

running application without having to pass on any flags to application at its startup. To collect

detailed GC data from jstat, issue a command like jstat –gc 1 50, which is a way of specifying

that we want to print 50 GC outputs, each sampled 1 second apart. Here is an explanation of

columns we would see in such an output:

S0C, S1C Capacities of survivor spaces S0 and S1 respectively (KBs)

S0U, S1U Utilization of survivor spaces S0 and S1 respectively (KBs)

EC, EU Young generation (aka Eden space) capacity and utilization respectively (KBs)

OC, OU Old generation capacity and utilization respectively (KBs)

PC, PU Permanent generation capacity and utilization respectively (KBs)

YGC, YGCT Total young generation collections and total time spent in this collection
respectively

FGC, FGCT Total old generation collections and total time spent in this collection
respectively

GCT Total time taken by garbage collection activity

One of the interesting things that can be done with output is to plot it for analysis. Here is one

plot created with outputs for YGC, YGU, OGC, and OGU columns.

Notice that tenured generation is almost full while the young generation has a lot of free space.

Importantly, the trend continues over a period of time. This could mean that we are promoting a

2014 EMC Proven Professional Knowledge Sharing 15

lot of objects from young generation to old generation. We may need to look closely at the code

to see why we are having so many long lived objects (if we have too many objects which are

surviving GC cycles when they should not). It is also possible that space provided to tenured

generation is not enough and may require some tuning10. Another possibility could be whether

some of our heavy duty objects have directly been created in old generation. When can objects

be created directly in tenured generation? When GC is unable to reclaim enough space in

young generation to allocate the object to it and even after clearing off weak references, the

space made available falls short. So, that may be another possibility to consider based on plot

above.

One quick hint which can be obtained from jstat is the reason for the last GC. This is obtained

by passing –gccause option to jstat along with PID for the Java process. It provides information

about last cause of GC as well as current cause of GC (if any).

We can also look at heap activity through jVisualVM11 tool by attaching it to a running Java

process. The advantage of jVisualVM is ease of use and graphical representation of

information. Once it attaches with the process, its “Monitor” tab can be used to display heap

activity as shown next.

There exists another heap generation which is known as permanent generation. It is used for

storing field, method, class-related reflection information. Space for this generation does not

2014 EMC Proven Professional Knowledge Sharing 16

come from Java heap memory settings (as given by -Xms and -Xmx flags to application at its

startup). If an application experiences out of memory issues due to shortage in this generation,

the most common cause is loading too many classes dynamically (such as Java Server Pages).

A way to track loading and unloading of classes is by passing the flag –verbose:class at

startup of the Java application. Another reason for permanent generation going out of memory

is when an application uses a lot of intern()’ed String objects for better re-use. JVM tool jmap6

can be used to know details of heap generations. To know permanent generation details,

execute it as jmap –permstat <PID>. It will provide details of how many Strings have been

interned and their total size as well as details of each class loader, the number of classes

loaded by them, bytes allocated, etc.

Note: With Java 1.7, the interned Strings reside in young/ old generation12 and JVM parameter

-XX:StringTableSize can be used to specify the string pool map size.

Another possible cause of Java applications going out of memory is when application reports

back a message that a requested array size exceeded VM limit. This is usually due to

miscalculation on the part of application logic and indicates an attempt to allocate an array

whose size exceeds maximum heap size configured. Some applications tend to explicitly

perform garbage collection by invoking System.gc() method. Use of this method is

discouraged. It not only impedes functioning of the garbage collection process but also forces a

major GC event causing garbage collection of both young and tenured generations. It is

appropriate to disable such method calls through following flag to application at its startup -

XX:+DisableExplicitGC.

It may also be important to note that distributed garbage collection invoked as a part of remote

method invocation (RMI) also makes explicit calls to System.gc() to collect remote objects

periodically. The following two arguments can be used to increase this collection interval -

Dsun.rmi.dgc.server.gcInterval and -Dsun.rmi.dgc.client.gcInterval.

While we are on the topic of memory, it will be good to note that top command may show

memory footprint as more than what is set through -Xmx flag. This flag decides the maximum

size that a Java heap can grow to. The footprint as reported by top command includes heap

size (young + old + survivor spaces), permanent generation as well as stack memory allocated

to Java threads, and memory consumed by native calls such as through Java native interface

(JNI). Hence, it should be a surprise that the top output shows value more than -Xmx.

2014 EMC Proven Professional Knowledge Sharing 17

Heap dump

While GC output points to a variety of issues that we may face due to GC pauses, it is still

imperative to not produce so much garbage in the first place. Heap dumps are sometime

necessary to know which objects are consuming a lot of space and their object graphs. Another

reason for a Java process to consume a lot of memory could be memory leaks. A lot of

applications use Hashtable (or equivalent) data structure. It is not uncommon for a leak to occur

when developers add key-value pairs and do not make sure that the key objects are made

immutable. Many hash code computations are done using the state variables of the object. A

leak is now possible whenever developers change the state of the object from outside of the

hash structure leading to change in its hash code implicitly. Such an object is now “lost” and is a

dangling reference.

Heap dumps help point out memory leaks as well. There are many ways to force a heap dump.

An appropriate time to generate heap dump may be when the application experiences an out of

memory error condition. In such cases, if the application were started with the flag -

XX:+HeapDumpOnOutOfMemoryError, then upon experiencing an out of memory error, the

application will generate a heap dump. The heap dump is contained within a file

java_pid<PID>.hprof, where PID is Java application’s process ID. In case we would like to

have heap dumps in a specific location or change the name of the file, then -

XX:HeapDumpPath flag can be used.

We can also use Heap Profiling (HPROF) tool to generate heap dumps. This can be used at

application startup as java -agentlib:hprof=file=heapdump.hprof,format=b. This will generate

a file by the name heapdump.hprof. The format specified here is binary.

A heap dump so taken can be analyzed with jHAT6 (Java Heap Analysis Tool). This can be very

useful to locate all the objects on heap and their references as well as understand why certain

objects are not candidates for garbage collection as yet. Heap dumps should be generated in

binary format for jHAT to process them. The tool can be used to view heap histograms which

provide counts and sizes of each object on the heap when dump was taken. It is easy to browse

each object graph. The graph is intuitive as it points to all objects which are reachable from any

given object and summarizes total retention in terms of bytes and number of objects. This is

usually very helpful in debugging object retention related issues as well as memory leaks.

2014 EMC Proven Professional Knowledge Sharing 18

Deadlock detection and lock contention

Java thread dumps also provide information about thread level deadlocks13. An example is

shown below.

Another useful tool to use would be jVisualVM. As an example, the output below shows real

time thread activities. The tool is not just limited to thread related information but can be used to

profile heap memory as well as CPU utilization.

2014 EMC Proven Professional Knowledge Sharing 19

One can further browse individual thread level details by clicking on one of them.

As evident, clicking on one of the above threads shows that this particular thread is starving for

a lock and has spent 100% of its time waiting to acquire this monitor. Generating a thread dump

will show all of them in BLOCKED state.

2014 EMC Proven Professional Knowledge Sharing 20

Virtual Memory

Virtual memory is a scheme through which OS are able to provide a layer of separation between

actual physical memory and logical memory that an application uses. This is achieved by

combining random access memory (RAM) with a swap memory space, which may be carved

out from hard disk itself. Executing free command provides information about memory usage.

Here is one output obtained from command free –m. All values are in Mb (due to –m flag).

One mistake that people tend to make with this output is to interpret free memory as 125Mb. It

must be noted that total free memory is obtained by summing entries under free, buffers, and

cached columns and that is 1289Mb. This is shown in third row from the top. It may be noted

that while memory allocated to buffers and cache is being used, it will be reclaimed and made

available to applications should the system run low on memory.

Memory is laid out in smaller units, called pages, and applications use these pages to perform

their functions. Page faults are a result of memory resident pages of an application being

swapped out (to swap memory) and being required back in main memory. Some amount of

swapping is not harmful and is acceptable. Excessive swapping is termed as memory thrashing

and is detrimental to application performance. Thrashing happens when those pages are

swapped out which are still in use and hence very soon, access to those pages causes

swapping in again and this action may further send out other pages which are in use.

Consequently, the system ends up swapping in and out pages and manages very little useful

tasks. Main memory shortage is one of the root causes of thrashing to set in.

To know that an application suffers from thrashing, one can look at output from sar14 (System

Activity Reporting) command. The sar output contains useful information (both present and

historical) about system statistics. Most of the commands such as vmstat, iostat, ps, netstat, etc.

provide a current snapshot of the system. Many times, we need to investigate issues which

happened in the past. In such cases, sar provides a comprehensive record of system data. It

2014 EMC Proven Professional Knowledge Sharing 21

keeps track of memory, CPU usage, IO subsystem usage, interrupts, context switches,

connection counts, and many others. As stated, it is very useful for observing historical trends.

Here is an output taken with sar –W command. This command reports page swapping statistics.

The output shows that we had excessive swapping between 08:40 and 08:50. It must be noted

that the application will appear to have come to a standstill, so user (us) CPU in top output

would be low. However, the system is still pretty busy due to a majority of its time being spent in

rectifying page faults and dealing with excessive swapping. Hence, system (sy) CPU

component would show high utilization. Another thing to check at this time would be major faults

that different threads are experiencing. We revisit ps command and request information on

major faults experienced by each thread as given below (notice the last value within quotes as

maj_flt):

The last column in output would now contain the number of major faults each thread has had.

Some threads would definitely have non-zero entries in their last columns. Plus, many of them

would show an increase in this number as you take multiple samples of the above command.

These would be threads which are facing maximum penalty due to thrashing. The bad thing

about thrashing is that the system may continue to thrash long after the condition which caused

it is no longer present. This makes identifying root cause of thrashing difficult.

One more problem that memory thrashing can lead to is GC slowdowns. This can especially

happen if portions of heap happen to overlay on swap memory. Memory thrashing does not

necessarily mean RAM shortage. eXtensible markup language (XML) document object model

(DOM) trees are also usual suspects as are ResultSet objects created out of database queries.

As a good practice, it is advisable to keep track of sizes of all such objects.

ps -eLo 'lwp,ppid,cmd,psr,pcpu,etime,start_time,state,maj_flt' | grep java

2014 EMC Proven Professional Knowledge Sharing 22

It could also mean inefficient data structure usage as well as in-memory cache going out of

control. Certain data structures also provide better spatial locality of reference (such as arrays

or array-backed Hashtables or array-based ArrayList versus linked lists) and help minimize

page faults. We will discuss more on how to monitor such intricate details when we discuss

about Linux kernel profiling.

While on the topic of virtual memory, it may be noted that sometimes Java applications indicate

an out of memory error with a detailed message indicating shortage in swap space. In such

cases, JVM will create a detailed fatal error log. This log provides useful information about the

system memory and thread which failed due to the error. Such an error may indicate (but not

necessarily) shortage of overall swap space for the OS or could also mean a leak in native

memory.

Connection problems

Sometimes the problem could be due to network level issues. In such cases, it is important to

understand how our application fits in the entire ecosystem. For instance, what are all the

important network elements that a request traverses through before it reaches our application

and network elements encountered when our application makes requests to other applications?

Transport Control Protocol (TCP) knowledge is extremely useful in understanding issues of this

nature. One of the commands that helps provide information about network level details is

netstat. Executing netstat command with –n switch lists details about protocol being used by

socket, receive and send buffers, local address, foreign address, and state. We can always filter

TCP-specific sockets from such a command.

In the sample output shown below, the first column is the protocol (TCP in this case) being

used. Recv-Q column shows the count of bytes that have been received by TCP stack on this

host but not yet read off by Java application. Send-Q is number of bytes that are held up in TCP

send buffer and yet to be relayed to target. Send-Q is directly impacted by network latencies

and TCP sliding window sizes of the recipient TCP stack. Watching these two columns with

multiple netstat output is useful to know whether we are experiencing issues. It is entirely

possible that the TCP stack on target application is experiencing conditions such as zero

window size.

2014 EMC Proven Professional Knowledge Sharing 23

One way to probe more would be to initiate a TCP dump using tcpdump command and taking a

packet capture (pcap) in some file. A pcap file can be analyzed with tools such as Wireshark15.

Here is an example of zero window condition as indicated by Wireshark analysis of pcap file.

2014 EMC Proven Professional Knowledge Sharing 24

TCP zero window condition means that the target is overwhelmed or has just become slow.

Slowdown could be due to internal application issues and can be looked at separately. TCP

dump also provides information about time. One can change the display format of time to show

actual system time against each line in the TCP dump. This is extremely useful in correlating

TCP level information with application log time stamps as well as Java thread dumps. TCP zero

window condition also proves that the network is not causing the slowdown in all likelihood. In

zero window conditions, the sender side TCP dump will also show a higher value for ‘bytes in

flight’ because that data is not yet acknowledged by the target application. If the Java

application is the cause of slowdown, taking thread dump at this time might show multiple

threads stuck at socket operations.

TCP allows certain flags to be passed between sender and recipient. One such flag Reset

(RST) flag. A Java application that experiences a lot of java.net.SocketException with

exception message as “Connection reset by the peer” is a clear indication of RST flag been set

by the receiver TCP stack. One reason for such a behavior could be sudden shutting down of

the target application or could also be due to target TCP stack being overwhelmed with

incoming TCP connections leading to its listen backlog buffer being full. Listen backlog buffer is

used by TCP stacks to queue incoming TCP connections as it may not have any dedicated

connection to spawn.

Note: RST flag was mostly used to denote an abnormal session termination. These days, RST

flag is also being used to shut down normal sessions. This is more of an optimization over the

usual FIN-WAIT1 FIN-WAIT2 (client side) and CLOSE-WAITLAST-ACK (server side) state

transitions. The usual FIN-ACK approach leads to a TIME-WAIT state while RST achieves

instantaneous cleanup, wiping out the connection. Bottom line, RST flag alone does not indicate

a problem. We must be noticing issues in Java application to investigate if it is a problem.

2014 EMC Proven Professional Knowledge Sharing 25

Many times, the slowdown may not necessarily be due to zero window conditions, network

latencies, or application level slowdowns. One of the issues that an application can also run into

is due to how TCP functions. TCP uses Nagle’s algorithm16 and delayed acknowledgements.

These address two different kinds of situations.

Nagle’s algorithm tries to improve performance by combining many small packets before

sending them out on network unless an acknowledgement for previously relayed packets is

received and buffered data in sender’s TCP stack has a ‘PUSH’ bit set (no matter whether

maximum segment size (MSS) worth of data has been accumulated or not). The algorithm also

allows sender to relay data if send timer expires, or more than half the send window size worth

of data is ready to be sent.

Delayed acknowledgement applies more to the receiver end wherein acknowledgements for

received packets are delayed until either enough packets have been received to acknowledge

them all, or receiver has some data to send back along with the ACK, or acknowledgement

timer has expired.

In this situation, both ends will delay the communication unless their timers expire and this will

show up as latency in the application. One way to handle this would be disable Nagle’s

algorithm on the sender’s side by invoking java.net.Socket class method

setTcpNoDelay(boolean on) and passing it a Boolean false value.

We must also note that every TCP connection set up requires a finite amount of memory to be

allocated and this is owned by kernel itself. Memory owned by kernel is non-swappable and can

impact Java application performance leading to a lot of memory being held up due to a large

number of incoming connections or even due to connections which are in the process of

terminating. As an example, if we see a lot of threads in 2MSL (Maximum segment lifetime)

state then it may not be a bad idea to reduce this value (after thorough load testing).

Besides socket level information, netstat can also be used to generate a lot of network level

statistics. These can be stored and plotted to draw inferences. To generate statistics, we can

pass –s switch as netstat –s. We will not go into full details of the output, but some of the

information that is very useful here includes counts of total packets received, active and passive

connections opened, connection resets received, delayed acknowledgements sent, TCP

segments retransmitted, TCP data loss events, resets received for embryonic SYN_RECV

sockets, etc. These can be very informative when we trend them over a period of time. For

2014 EMC Proven Professional Knowledge Sharing 26

example, consider resets received for embryonic SYN_RECV sockets count. This counter

indicates that the client initiated a 3-way handshake but never completed the handshake with us

and sent us back a RST flag after receiving SYN-ACK from our side. Sometimes this can also

be indicative of SYN flood attacks.

While we are discussing slow application problems, it is important to acknowledge an important

edge case which may make TCP appear unreliable. This usually happens when the host on

which a Java application is running is very slow or its TCP stack is overwhelmed. What can

happen is that clients may send in data and close the connection without our application having

received this data. This amounts to data loss and ends up being a very difficult bug to

troubleshoot. It can only be located with TCP dump analysis with a tool such as Wireshark. Here

is what could happen.

The client sends data to our Java application. The TCP stack on our server acknowledges that

data but has not yet delivered it to our Java application. This could be the case when our

application is overloaded or experiencing other issues such as GC. When all data has been

acknowledged by our server’s TCP stack, the client is free to close the connection. At this point,

our application has still not read the data off from TCP stack. It is likely that the TCP receiver

eventually times out because our Java application was too busy to accept the incoming accept

request. Once the timer expires, the TCP stack issues a RST flag and wipes out the data as

well as the connection, which of course, does not alert the sender because it has already closed

the connection amounting to data loss.

Context Switching

Context switching is the process by which an operating system pauses the execution of a thread

or a process by saving its state (program counter, variables, etc.) so that it can be resumed from

the same point later. Context switching allows for multiple threads to share CPU cycles.

Possible places in the Java application where a thread can get context switched include waiting

for a lock on some object, explicitly giving up CPU by calling sleep() or yield() method on the

thread, invoking a join() on another thread, waiting for I/O subsystem to fulfill a read/ write

request, higher priority thread entering a RUNNABLE state, page faults experienced by thread

due to its memory resident pages not being available in main memory, etc.

Excessive context switching is bad and causes applications to degrade. It is important to note

that one of the reasons could also be spawning of many threads. When CPU has many threads

2014 EMC Proven Professional Knowledge Sharing 27

to deal with, it may context switch threads even before they are able to do anything useful.

Usually, context switches in the range up to 4000 may not be that bad. However, if an

application is performing slowly, those few 1000s can also be a problem. In general, a sudden

huge jump in context switches is not a good sign.

A way to determine context switching values is through a command called vmstat which is

useful in printing virtual memory statistics. One way to use vmstat would be take multiple

samples over a period of time as vmstat 2 15, which instructs OS to emit information every 2

seconds and provide 15 samples.

Output from vmstat shown above indicates a steady rise in context switches across the

samples. If this Is bad or not would depend on whether the application experienced any

slowdown at the same time or not. If yes, did the slowdown progressively deteriorate application

performance? If yes, then we may have a reason to worry. Also, most likely the application must

have experienced slowdown because the first column indicates that it has a lot of processes

waiting to run but were probably experiencing context switches making them slow.

At this point, an output of ps (as we discussed earlier) that lists only Java threads will be

extremely useful. Another useful output at this time would be thread dumps. There may be more

threads than what we assume to be present. If we have data as shown by vmstat above, it is

usually easy to infer whether our Java threads are experiencing issues due to context switching

2014 EMC Proven Professional Knowledge Sharing 28

or not by looking at application logs. If the application prints logs for every important step that a

thread performs, it should be easy to see long gaps in between their timestamps.

Other useful information in vmstat is about memory, CPU utilization, and bytes swapped in/ out.

One more inference from this output is that because swap memory has stayed constant over

the sampling duration, it must not have caused context switching to kick in. Another point worth

noting in the output above is that, under the CPU utilization column, system CPU % (sy column)

has shown an increase around the same time when context switches increased. This also

points to considerable effort on the part of kernel as it is just busy context switching threads.

CPU affinity

Some Java applications can be more CPU-bound than being input-output (I/O) bound. CPU

affinity17 is a way to tie processes to particular CPUs. This has some advantages. One of them

is that when process gets context switched and rescheduled to run on the same CPU, chances

are high that its state information will be still present in CPU cache. If it were allotted a totally

different CPU, it will experience a series of cache misses and its state will either have to be

retrieved from another processor or from RAM. Another advantage is that it prevents processes

from being too greedy with respect to CPU cycles. So, if the application spawns multiple

threads, those are now restricted to run on only those CPUs to which process has been bound.

Linux has taskdef command to tie the process to given CPU(s). CPU affinity ensures that a

definite set of processors are always dedicated to our Java process. If we choose to implement

CPU affinity for our Java process, we must make ourselves aware of a potential pitfall which

surfaces due to interrupt handling in Linux.

For many years, x86-based systems have had Advanced Programmable Interrupt Controller

(APIC). The job of APIC is to deliver interrupts to various CPUs in the system. The pitfall here is

that APIC delivers all interrupts to CPU 0 by default. Running a command like cat

/proc/interrupts will indicate on most Linux systems that by default CPU 0 is handling all

interrupts. This puts extra load on CPU 0 and we may well avoid making our Java application

affine to this CPU. If we want to distribute interrupt handling amongst other CPU cores (only first

7 cores can participate in this distribution), we have to understand that for every interrupt

request (IRQ) number, there exists a directory dedicated to each interrupt number under

/proc/irq/ directory. Each of these directories contains a file by the name smp_affinity. We will

2014 EMC Proven Professional Knowledge Sharing 29

have to update this file to change the default CPU to which that particular interrupt will be

delivered for handling.

I/O Subsystem

Java applications can stall while performing input/ output to a storage device. It becomes critical

to be able to troubleshoot those issues quickly because very soon a majority of threads can get

‘frozen’ waiting for I/O subsystem to fulfill their requests. This has the potential of the entire

application coming to a grinding halt.

We will turn back to top command output first to see if we are experiencing I/O subsystem

slowdowns. Consider the output below which is taken during the time of application slowdown.

Now that we have determined that our application is experiencing tremendous I/O waits, we

next need to determine what is causing the delay. We should try finding whether the issue is

due to the storage device or if our application is handling multiple concurrent requests for

processing heavy-duty files on disk. To know which storage device may be the root cause of the

problem, we can issue iostat command. To draw some conclusions, we can take multiple

samples. Executing iostat with –x switch generates detailed I/O statistics.

2014 EMC Proven Professional Knowledge Sharing 30

The first part of iostat output displays CPU utilization which we have seen in top command

output as well. The bottom part of the output displays storage partition and device-wise

statistics. These include read/write requests issued to the device (r/s and w/s columns) as well

as average queue lengths of requests issued to the device. The most important parameters to

analyze would be those under the last three columns. The await column indicates average time

(in milliseconds) for I/O requests issued to the device to be served. This includes the time spent

by the requests in queue and the time spent servicing them. The column svctm indicates

average service time (in milliseconds) for I/O requests that were issued to the device. The last

column, %util, indicates device saturation levels. If this value is close to 100%, the device is

close to becoming saturated. Values higher than 100% indicate progressively more stressed out

devices. A good practice to ensure a response-time sensitive application is to not allow for more

than 70% utilization of the storage device. Thus, appropriately plan the capacity in advance.

Once we know which device is stressed and causing our application to stall on I/O operations,

we need to find two more things. One, details of this device itself and two, Java thread dumps to

see which threads are performing I/O operations and possibly which files they are working with.

Knowing about the files can help us complete our root cause analysis (RCA) and correlate

application behavior with I/O subsystem better.

To know storage device details is easy. In the case above, hda3 was the offending device and

we can find more details about it by just looking up its entry in /etc/mtab file. This file contains

information about currently mounted file systems and provides details about the device such as

mount point, file system details (ext3 or nfs or tempfs or other), along with other details. The

mount point will point us to a location (such as “/” or “/proc” or “/var” etc) with which we can

easily track back to application flows which may be performing I/O to it. As an example, if we

2014 EMC Proven Professional Knowledge Sharing 31

had all our logs being written to /var location then possibly we have overwhelmed the device

and are possibly also running close to it being full.

As a next step, we can generate Java thread dumps and we should be able to locate those

threads which are stuck while performing native I/O. We may see multiple threads showing up

stack traces similar to those shown below. As evident in stack trace below, many threads will

report as busy performing some operation or the other on I/O device. All of them show up as

RUNNABLE threads, but as we may have guessed, none of them is making any real progress.

We can confirm this by taking a few more thread dumps.

Note: Using iostat with a –n switch, will also give details of network file system (NFS) mount

points. Both –x and –n switches are mutually exclusive.

2014 EMC Proven Professional Knowledge Sharing 32

Thread Names

One shortcoming in our dumps that we have analyzed thus far is that thread names are not very

intuitive. For example, in the dumps above, if we could identify which files these threads were

trying to work with, it can provide ultimate clues into troubleshooting the problem. Java thread

API provides a very easy way to set names for the threads. This can be done while creating the

Thread object or by explicitly calling setName(String) method on Thread object. Most times,

our Java application threads will be performing operations which are unique in their own way.

As an example, we may have an application which assigns a unique ID to every message that

gets in to the system. Or, the user on whose behalf an operation is being performed may be

unique in terms of user ID. Plus, it is a good idea to have unique IDs being tagged in application

logs so that debugging becomes easier. Hence, setting a unique ID as a name for each thread

can be extremely useful in troubleshooting applications. As we discussed, we could simply

invoke setName(String transaction_id) every time we create a new thread dedicated to a

given transaction or take one from a pool of threads. If we take one from the pool, it will be

important to reset the name in a finally block by invoking setName(String original) method

again before we return the thread back to the pool.

File descriptors

If we are interested in listing all open files at any instant, we can use the lsof command. This

command can be used to filter only those files which are opened by Java processes by invoking

it as lsof –c java. In the above example, we can run this command and know all the open files

at that instant. Many times, a Java application fails to call close() method on various File and

streams that it works with. This leads to file descriptor leakage which eventually leads to

IOException with a message indicating “Too many open files”. Linux provides a way to

increase these descriptor limits (and other aspects as well, such as number of threads, default

thread stack sizes) through the ulimit command. However, those usually provide only

temporary respite at best.

Such issues can easily be tracked by executing lsof command as listed above. If the application

file names are unique (say, those are messages on disk or data pertaining to unique

transactions, etc.), it is safe to assume that each thread name can be set to be the same as

those unique IDs. This has multiple benefits. First, these thread names will show up in thread

dumps which will make it very easy to correlate exact transaction or message that they

represent at the time of dump being generated. Second, if we issue an lsof command at the

time of taking thread dumps, it will also report the exact path to the disk for those open files.

2014 EMC Proven Professional Knowledge Sharing 33

Correlating thread dump of the thread dealing with this file (as it now has the same name as file

name) will be a very easy matter now.

It may be noted that lsof will list all open file descriptors which includes socket connection as

well. It provides much more information, such as size of file being read, mode of operation (r, w,

etc), node numbers, etc.

Tempfs and ramfs

If our Java application is getting slowed down too often due to disk accesses, it may benefit

from directly creating those files on a portion of RAM allocated for them. This would make the

I/O process faster. Tempfs and ramfs are two means to dedicate a portion of RAM and be used

as a separate partition. A Java application can continue using java.io.File application

programming interface (API) or New I/O (NIO) package to deal with these files. From an API

abstraction point of view, there is no change at all.

Volatility of RAM makes it unsuitable for storing critical data. However, many applications

generate a lot of temporary files and those can be stored on Tempfs or ramfs. Both tempfs and

ramfs can be mounted with mount command. It must be noted that there are some differences

between the two and we must be aware of them. Tempfs honors the size restriction put on it

when it was mounted. This means that once this limit is reached, it will error out with the

infamous “no space left on device” IOException. It may also be noted that tempfs can use swap

portion as well. However, the size limit specified applies to its overall footprint on RAM + swap.

On the other hand, it does not make any difference if we specify size for ramfs as it does not

honor those limits and grows dynamically as long as there is free space on RAM. Once RAM is

exhausted, it will not use swap memory space at all and report back similar error.

Application logging

Seasoned programmers will agree that application logs are the most important tool for

troubleshooting any application. While there may be many guidelines about what to log, we will

focus only on those which ease the task of troubleshooting.

First and foremost, every log line must have an ID tagged to it that identifies the transaction it is

a part of. In a production system, multiple log statements will interleave and unique ID tag will

help segregate application flows easily. Second, every log statement should print the thread’s

name that emitted the log. This helps correlate application with thread dumps and if our

application is setting some intuitive thread names, this becomes a big plus. Next, we must log

2014 EMC Proven Professional Knowledge Sharing 34

time stamps with every log to the granularity of milliseconds. It is also important to print in logs

the URLs to every third party application which our application connects to. Logs must also print

names of application-specific entities such as files being accessed, messages being handled,

transaction being performed, etc.

Developers should be encouraged to write logs which can be easily parsed with scripts. Always

put whitespace between printing the log and appending variable’s value to it. It is always a bad

idea to print logs while holding another lock. It is also a bad idea to print data which requires

acquiring another lock (such as printing size of Hashtable object).

It is absolutely critical not to hide any exception. Print all exceptions to logs and values of

method parameters around the time exception was generated. If our application has log rollover

policies set up, it is important to plan for enough capacity to retain logs long enough to be able

to review them when and if the need arises. Even older logs are best stored for some time as

they can offer great insights into application behavior from a historical perspective.

Writing to System.out is always a bad idea as those may get redirected to /dev/null.

It is critical to monitor a newly released feature closely and logs are an important tool in this

regard. If we do not introduce logs around new features, we will not be able to investigate

whether the issue we notice is due to software changes or not.

In distributed systems, passing along a unique ID (could be transaction ID, message ID, etc.)

between applications and printing it in their individual logs can help correlate flows which span

multiple systems.

It may also be a good idea to store logs in a common place and index them on important fields.

Apache Lucene/ SOLR can be useful tools in indexing the same. Storing logs in a common

place has another advantage. Powerful analytics can be built on top of such logs using

statistical and mathematic models which can further help with complex troubleshooting analysis

and application behavior predictions.

Virtualization

Increasingly, more applications are beginning to take advantage of virtualization. It is possible to

run multiple JVMs on the same virtualized machine. All the issues we have discussed so far

apply here as well.

2014 EMC Proven Professional Knowledge Sharing 35

However, an additional checklist item gets in place when we size the virtual machine’s memory

requirements. This should ideally be calculated taking into consideration the memory that would

be needed by each guest OS. Failing to do so can result in main memory problems for our Java

applications which we discussed above. Consider a case where we have run our Java

applications on VMware ESX/ESXi virtualization hypervisor. ESX/ESXi can use swapping or

memory ballooning to dynamically control the amount of memory being allocated to virtual

machines. Ballooning is the preferred way and requires a balloon driver. Swapping is used

when either the driver is not available or is unable to reclaim memory quick enough. Since,

swapping is detrimental to performance, it is important to reserve the memory for Java process

by taking into account its entire footprint (heap + stack + permanent generation) as well as

guest OS memory requirements.

Timekeeping is critical to troubleshooting issues. With virtualization, it becomes tricky18 as to

how the guest OS remains in sync with actual time as tracked by the physical machine. In case

CPU utilization is high and the Linux OS under question uses tick counting as a means to keep

track of time, it is possible that this guest OS falls behind actual time. This is bad because we

may have problems in correlating events with real time and this can impact our ability to

troubleshoot effectively.

Tick counting mechanism is used by many OS and involves interrupting the CPU periodically to

keep track of time. With Java applications, this can impact its performance and one must look at

output of top and vmstat to keep track of interrupts. A way to address this problem would be to

use an external Network Time Protocol (NTP) source.

When working on virtual machine-hosted Java applications, it is usually accurate when it comes

to reporting guest OS specific context switches, interrupts, CPU usage, and memory usage.

One more aspect to be aware of when using virtualization is about accessing functionality

provided by hypervisor from a guest OS hosting our Java application. This introduces some

complex touch points (entry and exit) between the two. Do note that these touch points are not

being explicitly called by Java application but are required in any virtualized environment. This

can have a direct bearing on the CPU cache contents being flushed. This is more so because

the hypervisor code itself now needs its data and code to be present in cache lines. This causes

CPU cache to be likely flushed of data that our application would have needed.

2014 EMC Proven Professional Knowledge Sharing 36

One of the most important caches is Translation Look-aside Buffer (TLB) which maintains a

mapping of virtual to physical memory addresses. These translations are costly and this is why

a fully dedicated cache (TLB) is used to store these. Since cache is affected every time upon

entry to the hypervisor, it may be helpful to enable support for large memory pages. Increasing

page size19 will allow for a single TLB entry to represent larger memory range. Keeping these

aspects in mind, we can pass the following flag at the startup of our Java application -

XX:+UseLargePages. We will also have to enable support for usage of large pages in our

kernel (Linux kernel 2.6 onwards) by appropriately setting /proc/sys/kernel/shmmax and

/proc/sys/vm/nr_hugepages.

If our application continues to run in a degraded manner then it may be possible that the

hypervisor has swapped our application altogether.

An important parameter to also look at would be stolen CPU field in top output. This is usually

the last column (we briefly mentioned this when we discussed top output in detail). This column

indicates CPU time that our application was ready to run but the hypervisor chose to run other

applications. This can also be regarded as virtualization penalty. Here is an example from top

which shows stolen CPU time:

Summarily, while virtualization has resulted in great savings in terms of hardware consolidation,

its cost20 can have an impact on our application.

System level tracing

Sometimes the issue cannot be debugged within the realm of Java application alone and we

may have to enable system level traces. Consider a case where requests are not reaching our

Java application at all (at least we do not see traces in our logs). We do not know whether there

is an issue with our application not logging enough information, or whether the request never

even reached our application. In such cases, strace command allows us to enable system level

trace and we can see system level calls being made.

Consider another case, where certain requests that were reaching our application were causing

it to crash (possibly with a segmentation violation). We would like to find out more about what

2014 EMC Proven Professional Knowledge Sharing 37

these kinds of requests are. Let’s troubleshoot this case using strace and also hope that we

gain some insights into this wonderful utility.

Before we begin troubleshooting this issue, here is something to think about. To know what may

be causing the application to crash can be a daunting task. What we can attempt at least is to

divide and conquer rather than trying a brute force method to think about possibilities. One way

would be to stop all incoming traffic to this application by disabling it on the load balancer. It can

then be checked whether the crash is caused due to some internal trigger or not. This way we

may be able to eliminate many possibilities and reduce our troubleshooting surface area. Once

we know the PID of our Java process (using jps or ps), we can trace its system calls as strace

-f -t -r -p 21847 -o /path/to/output/21847_strace

There are many more options available but we will list here details of the ones we have used

above. The –f flag instructs to trace the forked child processes as they are created. This is

important to be able to trace all our Java threads. The flag –t is to print time of the day against

each entry. The –r flag is to print the relative timestamps against each entry. The –p flag is to

specify the process ID and is followed by the numeric PID value. The –o flag is to store the

output of strace command to some file for later analysis.

It is very easy to follow the chain of events in strace output given above. First column is the PID

of the child thread. Next two columns list the timestamp and time taken for a given call. As can

be seen, this output shows that an incoming HTTP HEAD request was made for the resource

/heartbeat. Immediately after that, the process terminates with a segmentation violation. This

output also shows that no other processing seems to have taken place inside our application

and hence, it is safe to assume that closer scrutiny of incoming HTTP HEAD request is required

and is most likely the root cause of this issue.

2014 EMC Proven Professional Knowledge Sharing 38

Note: As an aside, troubleshooting for this issue was done exactly as explained here. Since,

this application crashed intermittently, the first thing to find was which request(s) or internal

processing may be causing this to happen. Another aspect about this application was that it is

enabled both on an external as well as an internal virtual IP (VIP) and is load balanced. To know

what could be the root cause, one node (running this application) was disabled on both internal

and external VIPs. This was to ensure that there are no application threads which are causing it

to crash. Maybe the application starts daemon threads at its startup which were somehow

causing this crash. The application did not crash, so next it was disabled on external VIP but

enabled on internal VIP. The application on this node crashed soon. This proved that most likely

the issue was internal. Next, it was enabled on external VIP and disabled on the internal VIP. It

did not crash again which proved that external requests were not the root cause.

With help of strace it was determined that the application crashed whenever a monitoring

application sent it heartbeat requests. It turned out that the monitoring application had

undergone some upgrades which resulted in corrupting a few HTTP HEAD requests. These

requests landed on Apache HTTP server which front-ends the Java application. The requests

never made it past Apache to be logged in our Java application logs.

2014 EMC Proven Professional Knowledge Sharing 39

It should also be noted that strace output can be used to also figure out whether our application

is experiencing deadlocks. If the application threads seem to be stuck on futex21 (Fast

Userspace Locking) system call, then most likely application threads are deadlocked because

futex is typically used to implement the contended case of a lock in shared memory.

Crash analysis

The topic of application crash is so broad that theorists could write a full book dedicated to it.

The possibilities are many more than what we are able to discuss here.

When a Java application crashes, it will produce an error log by the name hs_err_pidXXXX.log

in the working directory of the application. This file provides a lot of information about cause of

crash and problematic application frames. Location as well as name of this file can be changed

by passing the -XX:ErrorFile flag at startup of a Java application. As an example, this flag can

be set as -XX:ErrorFile=path/to/dump/java_error%p.log, where %p is useful to tag process ID

to the file name. It also contains information about the offending thread whose action led to the

crash. Some of the details provided here include thread name, its state, thread type, thread ID,

etc. Note in the crash log snippet below that that type listed for offending thread is JavaThread.

Other possibilities are GCTaskThread, VMThread, CompilerThread, WatcherThread, and

ConcurrentMarkSweepThread. Each of those is a special purpose thread within the VM. We

have already come across VMThread and GCTaskThread earlier. CompilerThread is dedicated

to HotSpot compilation of code. WatcherThread performs task of running periodic operations in

VM. It is a native watcher thread which simulates a timer interrupt waking up every 50ms.

2014 EMC Proven Professional Knowledge Sharing 40

The problematic frame can be VM frame (prepended with letter V in this case). It could also be a

C language native frame (prepended with letter C) among others. The state defines exact

operation that the thread was performing. The following table summarizes important states.

_thread_in_vm Thread executing VM code

_thread_in_native Thread executing native code

_thread_blocked Thread in blocked state

_thread_new Thread created but not yet started

_thread_in_Java Thread running compiled/ interpreted Java code

Next, the error log contains information about the signal which caused the crash, register

context, top of stack information, and following opcodes close to the program counter (PC)

when application received faulted and crashed. These are followed by a section on thread

stack.

There are details about memory map which follows and can be used to locate where exactly the

program counter (PC) points. We may recall that PC is displayed at the beginning of this error

file. A memory map of a process contains information about libraries it uses as well as their

locations (both code and data segments). Here is one example:

2014 EMC Proven Professional Knowledge Sharing 41

In this process map output shown above, the first column shows the memory span of the library.

This can be extremely useful in mapping the program counter to identify the exact offending

library. The second column is easy to determine which of them is code versus data segment.

The one with ‘w’ bit set is data segment.

Depending upon the severity of issue, sometimes a full error report may not get generated. It is

even possible that process map output is not included. In such cases, it can be useful if we

generate process map of our application using pmap command. The same information can also

be found in /proc/<PID>/maps, where PID is process ID of our Java application. It must be

noted that there is no point in taking a process map if our application has already crashed as

there won’t be one existing.

Note: In case the application uses Apache projects such as Lucene and SOLR for indexing the

documents with Java 1.7, a bug22 in the hotspot compilers can cause index corruption23 and

also lead to segmentation violation issues. This has to do with two default VM option flags which

are turned ON by default. These are -XX:+OptimizeStringConcat and -XX:+AggressiveOpts.

Those are also present in release 1.6 but are turned OFF by default. The first of these flags tries

to find opportunities to optimize Java String concatenation while the other turns ON compiler

optimizations that are expected to default in future Java releases. Index corruptions in Lucene

happen due to bugs which wrongly compile certain loops. This can be avoided by disabling

those optimizations using JVM flag -XX:-UseLoopPredicate

HotSpot Compilation

HotSpot24 component in Java Standard Edition (SE) performs multiple functions including

adaptive compilation of Java bytecodes into optimized machine instructions. HotSpot keeps

track of which portions of a Java application are being used more than the others. These

methods are assumed to be in hot spot and the HotSpot complier compiles them using Just-In-

Time (JIT) compilation and further, heavily optimizes them on-the-fly. Let us consider the case

of application crash caused by the HotSpot compilation process. Here is an example of a crash

encountered due to HotSpot compiler thread:

2014 EMC Proven Professional Knowledge Sharing 42

It is evident from snippet above that the current thread is CompilerThread0, which is one of the

many compilation threads in the HotSpot Server VM. One way to handle this issue is to start

Java application with –client flag, which is unacceptable in most production software as it takes

away many optimizations that Server HotSpot VMs provide. The crash file output pasted above

clearly lists which method compilation led to a crash.

A better solution would be to exclude this method from HotSpot compilation itself. This can be

achieved by creating a special file by the name .hotspot_compiler in the working directory of the

Java application and adding a line in it as given below. Upon restart of the application, HotSpot

compiler will consult this file (if it exists) and exclude this method from its compilation process.

It is possible to change the default location and name of this file by using JVM flag -XX:

CompileCommandFile=/path/to/command/file. If we want to completely restrict compilation to

only a handful of methods, those can always be passed through command line argument to the

Java application using the flag –XX:CompileOnly.

Exclusion instructions can also be given at startup of the Java application using the following

flag -XX:CompileCommand=exclude,com/pdb/nas/FSDirectory,revokePermissions

Linux Kernel Profiling

Linux kernel 2.6+ provides an easy to use command-line tool called perf25 to find many intricate

metrics about our running Java process. The tool provides easy means to collect and analyze

data such as cache misses, i.e. L1, TLB, Last Level Cache (LLC), cache pre-fetches, branch

misses, times our process was migrated to a different CPU, etc. It can be executed as:

exclude com/pdb/nas/FSDirectory revokePermissions

2014 EMC Proven Professional Knowledge Sharing 43

Profiling with perf tool as shown above can be very useful in tuning the application. By default,

perf measures these metrics at user level. However, we can append each of the metric above

with a modifier to denote the measurement level. For example, cache-misses:G would provide

metrics for Guest machine on a virtualized environment. Similarly appending H would do the

same at Host machine level; h would monitor hypervisor events, etc. Monitoring at a specific

level can be very useful to also understand the cost of virtualization. It can also be very useful to

understand whether our algorithm or process is causing many cache misses (L1, LLC data and

instruction), wrong branch predictions or others events and we can tune it, if needed.

2014 EMC Proven Professional Knowledge Sharing 44

Monitoring

We have discussed troubleshooting at length in preceding sections. Let us turn our focus to

monitoring aspects. It is important for applications to provide hooks that enable effective

monitoring and early diagnosis. Proactive monitoring forms the core of effective troubleshooting.

As a first step, the key aspects to identify during software construction phase are those which

are directly influenced by applications and may require active monitoring. These would include

memory, sockets, threads, and storage to name a few. These aspects may be directly

influenced by applications and we will discuss how to monitor them in real and historical times. It

is important to define thresholds for these and trigger alarms in a timely manner.

OS specific

We have discussed how important monitoring aspects are, such as memory usage, file

descriptor counts, CPU usage, load averages, network statistics, thread counts, disk IOPS, disk

space, context switches, interrupts, major fault counts, bytes transacted, etc. It is extremely

useful if we are able to plot these metrics to spot trends.

Application specific

1. Queue depth – Applications may provide for various queues to store messages, files, or

other information. It is important to monitor queue depths and set alarms on them. It is

also a good architectural practice to follow separation of concerns and separate out

queues according to functions they perform. As an example, applications may have a

specific queue for incoming traffic bifurcated by type (i.e. HTTP GET requests versus

HTTP POST requests) or another high level function (i.e. buying an item versus selling

an item). Keeping them separate not only allows scaling them separately but paves the

way for easier monitoring and troubleshooting. Further, applications may provision a

separate queue for messages which failed for temporary reasons and retry them after

some time. Monitoring and alarming on such retry queues can be useful to know if a 3rd

party application is responding too slow or failing to respond altogether.

2. Latencies – Keeping track of internal application latencies is important. It is easy to

keep track of running averages using some simple data structures such as a circular

queue. It is useful to remember important numbers when it comes to latencies26.

a. Latencies bifurcated with respect to each application flow – It is important to

keep track of application flow latencies. A suggestion would be to separate them

with respect to functions they perform. A messaging system may want to

2014 EMC Proven Professional Knowledge Sharing 45

separate them with respect to time it took to decode some incoming message,

time it took to execute some specific algorithms, etc. It may also want to keep

track of time being taken on an average to write some data to a queue or read

from it. Keeping track of latencies has another indirect bearing. It helps make

design decisions better. One can easily understand whether adding extra

processing to some flow can lead to latency specific service level agreement

(SLA) violations.

b. Latencies bifurcated with respect to every 3rd party application invocation.

It is important to record time an external application takes to perform its

processing. For example, a telecom provider may want to keep track of latencies

with respect to time it took to make a call to billing system and relay call data or

how much time it took to authenticate some user by invoking a dedicated

authentication application. Those add to overall flow latencies and we have to

know those upfront. A good architecture may ensure enough insulation against

such external factors say, by means of making the flows asynchronous.

However, this is not always possible.

c. Latencies with respect to clients. This is extremely useful to know whether the

slowness in the application as being perceived by clients is also being

contributed to by them as well. A typical slow client (say, who comes over a slow

connection or itself is slow in pushing data or has buggy TCP implementation)

can consume a lot of application time and resources. Monitoring time taken by

clients to send in all data across is a good practice. Client side latencies may

also show up as “java.net.SocketTimeoutException: Read timed out”

exceptions. Certain HTTP layer applications such as nginx provide for a

dedicated response code (HTTP 499) which can keep track of such incidents.

3. Error counts

a. With respect to internal errors and exception cases - Keeping track of errors

internal to an application can be a life-saver when troubleshooting issues. An

appropriate example would be maintaining a counter to keep track of

transactions which were aborted internally for some reason. If possible, the

aborted transaction count should be further bifurcated into subcategories. For

example, our application may have separate counters for transaction aborted or

dropped due to malformed content, or due to authentication failure, or due to

insufficient funds. Monitoring and alarming based on such a counter can be

2014 EMC Proven Professional Knowledge Sharing 46

extremely useful in times when this counter shows sudden variation. It can be

particularly insightful to monitor this counter before and after a production

software is upgraded. Decisions to rollback an upgrade can be easily made when

such a counter is enabled and alarms set on it. Such counters can be useful to

ascertain quantum of data loss as well.

b. With respect to 3rd party application returned errors and issues.

Applications do not work in isolation. They coordinate with other applications to

provide services to end users. Many times, an error in a 3rd party application can

cause the application to either error out or degrade considerably. A good

architecture would prevent entire ecosystems from collapsing and ensure

graceful degradation. The architecture may or may not have taken necessary

precautions such as allowing for graceful degradation. However, monitoring 3rd

party application errors are critical to troubleshoot and isolate issues. Those

errors should include (but not be limited to):

i. Connection counts and failures – We must keep track of all connection

counts and connection failures with respect to all applications which we

transact with in separately dedicated counters for each of those

applications.

ii. Application specific errors and exceptions – We must keep counters

for specific error responses we receive from other applications. It is

always helpful to have separate counters for the most important (and

expected) error cases and bucket the remaining in a single counter.

iii. Retry later counts – Many times, applications can respond to us by

indicating that we should retry the flow later. We must dedicate a

separate counter to keep track of such incidents.

c. Error counts with respect to clients who invoke the application -

Applications which receive incoming traffic from client applications (such as

browsers, handheld devices, client application software) are best safeguarded by

keeping active track of errors which are originating from certain clients. Such

monitoring counters can be extremely useful in ruling out whether it is our

application at fault or not. When keeping track of errors with respect to browser

and mobile clients, it is useful to segregate them into different user agents. Many

HTTP servers (nginx or Apache) allow for logging details of incoming requests

such as source IP, destination IP, request type, request size, the response being

2014 EMC Proven Professional Knowledge Sharing 47

sent by our application to that request, etc. All of them also have a provision to

log time taken by the request to be served. This is an important parameter and

can be monitored separately.

4. Count of each application flow invocation – Keeping a counter to track application

flows is always useful when ascertaining if there is a sudden surge in flow compared to

other days. For example, an online retail application can keep track of creation of new

shopping cart counts, number of buys, number of payments initiated, etc. If there is a

sudden change in this counter, it can be first ascertained whether there has been a

change in response from the online retail application to other applications which are

submitting those transactions. It is possible that clients are resubmitting the transactions

due to some error in response being sent back to them. It is a good practice to keep a

separate counter for a given request type as well as its corresponding response. For

instance, a difference in count values for message submission requests to message

submission responses can point to problems. Failure to send responses in a timely

manner may be leading those clients to resubmit the messages over and over again. If it

is not a response issue, then those applications can be checked to ascertain if they have

been experiencing internal errors which are causing them to re-submit those messages.

Again, correlating counters can be extremely useful too. As an example, in the online

retail application discussed above, usually the number of buys should match with

number of payments initiated. If the number of payments initiated counter shows a much

higher value, most likely our billing service is erring out or it is even likely that someone

is trying to break in to our payment flow.

5. Count of internal application resources – Keeping a separate counter for important

resources such as database connections, LDAP (Lightweight Directory Access Protocol)

connections, threads pools, etc. can be very useful to determine application health. They

can also point to leaks in such important resources.

6. Transaction sizes – Usually, transaction size is ignored because it remains within some

range and the range is not on the order of multiple kilobytes. However, keeping track of

transaction size can be useful for media applications which deal with a lot of heavy duty

media being relayed to them. During peak holiday seasons, such as New Year or

Christmas, there may be many heavy-duty videos being uploaded and transaction sizes

may become extremely large (on the order of higher MBs) which may quickly drain

system resources or network bandwidth. Another aspect about heavy-duty media is that

at some point, the application may need to represent those as an in-memory data

2014 EMC Proven Professional Knowledge Sharing 48

structure (say, as a byte array) and put tremendous strain on heap memory. It is also

possible that there can be a strain on system RAM, causing it to start swapping heavily

or even end up thrashing. Keeping the size trends recorded historically enables enough

capacity planning to architect systems better. For example, we may even take a call to

sandbox transactions bigger than certain sizes and handle them with least priority or

sandbox them into a dedicated set of machines to handle them, etc.

Applications should also provide an easy way to fetch these values. There are many options

available such as Simple Network Management Protocol (SNMP) or HTTP or Java

Management Extensions (JMX). A good architecture will make sure that it is built with loose

coupling. Data structures which keep track of various counters, time ticks, or values should be

maintained separate from the core application architecture and data structures.

Applications degrade gradually unless it is a sudden crash. Using latency metrics for various

important flows or error counts, we can build in simple alarm measures in our application. Again,

these alarm triggers should fire independent of the application. This decoupling makes sure that

the application does not become taxed further and that critical alarms are triggered independent

of state our application may be in.

Most applications use heartbeats to monitor application health. A simple script can be put in

place which monitors the application heartbeat and upon successive failures or slow responses,

triggers a notification to the engineering team with details of some commands such as vmstat,

iostat, ps, top, lsof, etc. depending on the application nature. It must also trigger a few thread

dumps. If relaying of notification is not possible (not allowed), the script could save these details

in a file which can be separately analyzed.

2014 EMC Proven Professional Knowledge Sharing 49

Troubleshooting Checklist

Despite best efforts at building fail-safe applications, there will be instances of production

issues. Again, Murphy’s Law27 – “Anything that can go wrong, will go wrong” applies well. A few

pointers may be helpful in identifying the root cause faster. Usually, it is about asking the right

question knowing very well that every science begins with a good question. A very influential

book, Programming Pearls28, stated something to the same effect1. Asking the right set of

questions can help filter out ‘noise’ and focus on actual root cause(s). Preliminary investigation

should help us form a hypothesis which can then be proved or disproved. Here are some

questions which can provide initial guidance:

1. When did the problem begin and what were the exact symptoms?

This is important to not only understand circumstances around the issue time but also

understand the impact it is causing.

2. Were there any background jobs executing at the same time of issue?

Fire and forget almost always fails when it comes to executing long running jobs. Always

keep a document handy of all such background jobs and their scheduled execution

times. Many applications have been hit by some database job which got triggered and

exhausted database (DB) resources to the extent that upstream application flows started

timing out. New software releases can be negatively impacted if such jobs fire during the

same time window.

3. Has this issue been noticed before? If yes, when was it and what was the RCA? Does

the issue happen at the same time every day?

The basic idea is to see some pattern and use that as starting point.

4. Does the issue really impact business currently? How quickly can we assess data loss?

This is important to decide whether we are investing too much time in troubleshooting

issues. We tend to enjoy problem solving and engineering hours are expensive.

Calculating data loss is important because we may have SLAs around aborted

transactions, dropped messages, failed flows, delayed transactions, etc.

5. How have metrics changed after our new release?

It is a good idea to keep track of various metrics before and after any release. These

could be metrics that we discussed in previous sections. For example, if we were

keeping track of latencies or error counts before our production release, the same can

be checked for changes to ascertain whether our release has caused degradation.

1. Ch5, Pages 55-56 – “The expert debugger never forgets that there has to be a logical explanation, no
matter how mysterious the system’s behavior may seem when first observed.”

2014 EMC Proven Professional Knowledge Sharing 50

6. If the application has a common dependency which other applications also have (such

as a common database), and the problem is with respect to this common application, are

all dependent applications facing a similar issue?

Here the idea is to rule out common application as root cause. If the common application

is the bottleneck or has faulted, then not only our Java applications should experience

Java database connectivity (JDBC) issues, other applications also should.

7. Has our application changed recently? What else has changed besides our application?

Here, the basic idea is to eliminate possibilities. Many times, considerable effort goes

into troubleshooting the issue assuming that it is the application which is at fault.

However, knowledge of other aspects which may have changed can be of great help. It

is likely that the application has had a new release but at the same time some network

element has been re-configured. Maybe the Virtual Private Network (VPN) that our

clients or partners use to connect to our application has faulted or our load balancer has

hit some internal bug.

8. If there are multiple instances of this application on other nodes, are all of them

experiencing the same issue?

This can help us not only decide severity of the issue, but also form different hypothesis.

If the issue is not present on other nodes, probably something about the entropy on this

particular machine needs diagnosis or, this machine has received corrupt data from

client, or this node is misconfigured on load balancer, etc.

9. Is there a quick work-around which we can implement as a short term remedy?

It is important to contain the issue quickly especially if it causes data loss. Maybe we can

contain the issue if we restart the application every few hours. If we have multiple

instances of the same application, then probably a rolling restart of application on each

node can prevent complete outage. Sometimes, the remedy may be as simple as turning

ON or OFF some application configuration parameters. It is a good practice to document

such ‘knobs’ and keep them handy.

10. Could the problem possibly be affecting even other applications around the globe?

It may sound strange but sometimes we hit a problem which affects applications

globally. A subscription to bug or vulnerability notifications can go a long way in

preparing for them and saving on precious troubleshooting hours. An example is that of

Leap second bug29 which caused high CPU on many Java applications around the world

in 2012.

2014 EMC Proven Professional Knowledge Sharing 51

Conclusion

Troubleshooting Java applications on Linux can be tricky due to a whole range of possibilities.

We have tried making the subject more within our reach by looking at specifics of how we can

leverage both Linux and Java provided tools and commands to get to root cause in a quick

manner.

It is important to understand how to correlate Java application behavior with Linux commands

output to know on what aspect(s) of our application we need to focus. Importance of application

logs cannot be underestimated and serve as one of the most important correlation tools. We

have to exercise restraint in terms of commands we execute on a production system which is

already under stress knowing very well that these commands and tools can further degrade the

application.

Troubleshooting is a reactive measure. It is important to build in enough hooks during the

architecture and design phase of our application to help proactive monitoring and alerting.

Monitoring and alerting should be non-intruding when it comes to an application we are

architecting.

It is always important to identify these metrics upfront and pay attention to how those will

provide deeper insights into a misbehaving application. Creating a strategy around these

metrics and their acceptable thresholds can be very important in not only avoiding application

problems but can also provide invaluable insights into what to improve in application design.

These can be our key performance indicators (KPI) which help us honor our SLAs.

Asking the right questions can make a big difference and help create good hypothesis. The

ability to ask the right question has nothing to do with application knowledge in many cases and

aids the elimination process.

Finally, troubleshooting requires appropriate knowledge of application flows without which

correlation with command output can really not be achieved. Troubleshooting requires planning

which should ideally begin in the design and architecture phase.

Happy troubleshooting!

2014 EMC Proven Professional Knowledge Sharing 52

References

1. Annual software debugging costs - http://www.prweb.com/releases/2013/1/prweb10298185.htm

2. Musings on Math - http://musingsonmath.com/problems-that-fight-back-2/

3. The Medical Detectives 1
st
 Edition by Burton Roueche’, Penguin Group

4. Linux load averages - http://www.linuxjournal.com/article/9001

5. Linux top command - http://linux.about.com/od/commands/l/blcmdl1_top.htm

6. JVM monitoring tools - http://docs.oracle.com/javase/7/docs/technotes/tools/#monitor

7. JVM troubleshooting tools - http://docs.oracle.com/javase/7/docs/technotes/tools/#troubleshoot

8. Java thread dump analyzer - https://java.net/projects/tda

9. Livelock - http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

10. Garbage Collector Tuning - http://www.oracle.com/technetwork/java/javase/gc-tuning-6-

140523.html

11. jVisualVM Tool - http://docs.oracle.com/javase/6/docs/technotes/guides/visualvm/

12. Java 1.7 interned Strings - http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6962931

13. Deadlocks - http://en.wikipedia.org/wiki/Deadlock

14. Linux System Activity Reporting tool - http://linuxboxadmin.com/articles/tools-and-

utilities/tracking-system-performance-using-sar.html

15. Wireshark TCP analysis tool - http://www.wireshark.com/

16. Nagle’s algorithm - http://tools.ietf.org/search/rfc896

17. CPU affinity - http://www.linuxjournal.com/article/6799

18. Timekeeping in VMs - http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

19. What every programmer must know about memory -

http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf

20. Costs of virtualization - http://queue.acm.org/detail.cfm?id=1348591

21. Fast user space mutex - http://en.wikipedia.org/wiki/Futex

22. Java 1.7 loop unrolling bug - http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738

23. Lucene/ SOLR index corruption bug - https://issues.apache.org/jira/browse/LUCENE-3349

24. Java Hotspot VM - http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html

25. Linux kernel profiling tool - https://perf.wiki.kernel.org/index.php/Tutorial

26. Numbers every programmer should know - http://highscalability.com/numbers-everyone-should-

know

27. Murphy’s Law - http://en.wikipedia.org/wiki/Murphy's_law

28. Programming Pearls, 2
nd

 edition, Jon Bentley, Pearson Education, Inc.

29. Leap second bug - http://www.theregister.co.uk/2012/07/02/leap_second_crashes_airlines/

http://www.prweb.com/releases/2013/1/prweb10298185.htm
http://musingsonmath.com/problems-that-fight-back-2/
http://www.linuxjournal.com/article/9001
http://linux.about.com/od/commands/l/blcmdl1_top.htm
http://docs.oracle.com/javase/7/docs/technotes/tools/#monitor
http://docs.oracle.com/javase/7/docs/technotes/tools/#troubleshoot
https://java.net/projects/tda
http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://docs.oracle.com/javase/6/docs/technotes/guides/visualvm/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6962931
http://en.wikipedia.org/wiki/Deadlock
http://linuxboxadmin.com/articles/tools-and-utilities/tracking-system-performance-using-sar.html
http://linuxboxadmin.com/articles/tools-and-utilities/tracking-system-performance-using-sar.html
http://www.wireshark.com/
http://tools.ietf.org/search/rfc896
http://www.linuxjournal.com/article/6799
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://ftp.linux.org.ua/pub/docs/developer/general/cpumemory.pdf
http://queue.acm.org/detail.cfm?id=1348591
http://en.wikipedia.org/wiki/Futex
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7044738
https://issues.apache.org/jira/browse/LUCENE-3349
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://perf.wiki.kernel.org/index.php/Tutorial
http://highscalability.com/numbers-everyone-should-know
http://highscalability.com/numbers-everyone-should-know
http://en.wikipedia.org/wiki/Murphy's_law
http://www.theregister.co.uk/2012/07/02/leap_second_crashes_airlines/

2014 EMC Proven Professional Knowledge Sharing 53

EMC believes the information in this publication is accurate as of its publication date. The

information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION

MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO

THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an

applicable software license.

