
PATTERNS OF MULTI-TENANT
SAAS APPLICATIONS
Ravi Sharda
Principal Software Engineer
EMC, India Center of Excellence (iCOE)
Ravi.Sharda@emc.com

Manzar Chaudhary
Associate Principal Software Engineer
EMC, iCOE
Manzar.Chaudhary@emc.com

Rajesh Pillai
Senior Consultant
EMC, iCOE
Rajesh.Pillai@emc.com

Srinivasa Gururao
Principal Software Engineer
EMC, iCOE
Srinivasa.Gururao@emc.com

mailto:Ravi.Sharda@emc.com
mailto:Manzar.Chaudhary@emc.com
mailto:Rajesh.Pillai@emc.com
mailto:Srinivasa.Gururao@emc.com

2014 EMC Proven Professional Knowledge Sharing 2

Table of Contents

1. Introduction ... 7

2. Architecture Patterns ... 9

2.1. Application-Instance-Per-Tenant .. 9

2.1.1. Problem ... 9

2.1.2. Solution .. 9

2.1.3. Discussion ... 9

2.1.4. Consequences ... 12

2.2. Shared Application ... 13

2.2.1. Problem ... 13

2.2.2. Solution .. 13

2.2.3. Discussion ... 13

2.2.4. Consequences ... 14

2.3. Database-Per-Tenant ... 14

2.3.1. Problem ... 14

2.3.2. Solution .. 15

2.3.3. Discussion ... 15

2.3.4. Consequences ... 17

2.4. Database-Tables-Per-Tenant / Private Schema ... 18

2.4.1. Problem ... 18

2.4.2. Solution .. 18

2014 EMC Proven Professional Knowledge Sharing 3

2.4.3. Discussion ... 19

2.4.4. Consequences ... 20

2.5. Shared Database Tables .. 20

2.5.1. Problem ... 20

2.5.2. Solution & Discussion .. 21

2.5.3. Consequences ... 22

2.6. Metadata-Driven Architectures ... 23

2.6.1. Problem ... 23

2.6.2. Solution & Discussion .. 24

2.6.3. Consequences ... 25

3. Design Patterns .. 26

3.1. Private Table Layout... 26

3.1.1. Problem ... 26

3.1.2. Solution .. 26

3.1.3. Consequences ... 26

3.2. Basic Table Layout ... 27

3.2.1. Problem ... 27

3.2.2. Solution & Discussion .. 27

3.3. Extension Table Layout .. 27

3.3.1. Problem ... 27

3.3.2. Solution & Discussion .. 27

2014 EMC Proven Professional Knowledge Sharing 4

3.3.3. Consequences ... 28

3.4. Universal Table Layout ... 29

3.4.1. Problem ... 29

3.4.2. Solution .. 29

3.4.3. Consequences ... 29

3.5. Tenant Context ... 30

3.5.1. Problem ... 30

3.5.2. Solution .. 30

3.5.3. Discussion ... 30

3.5.4. Consequences ... 30

3.6. Tenant Context-Based-Router .. 31

3.6.1. Problem ... 31

3.6.2. Solution .. 31

3.6.3. Discussion ... 31

3.6.4. Consequences ... 31

3.7. Tenant Resolver ... 32

3.7.1. Problem ... 32

3.7.2. Solution & Discussion .. 32

3.8. Patterns for Authentication ... 32

4. Implementation Patterns .. 34

4.1. Isolating Filter ... 34

2014 EMC Proven Professional Knowledge Sharing 5

4.1.1. Problem ... 34

4.1.2. Solution & Discussion .. 34

4.2. Sub-Domain-Per-Tenant .. 34

4.2.1. Problem ... 34

4.2.2. Solution & Discussion .. 34

4.2.3. Consequences ... 35

4.3. Sub-Directory per Tenant ... 35

4.3.1. Problem ... 35

4.3.2. Solution & Discussion .. 35

4.3.3. Consequences ... 36

4.4. Connection-Pool-Per-Tenant .. 36

4.4.1. Problem ... 36

4.4.2. Solution & Discussion .. 36

4.4.3. Consequences ... 37

4.5. Shared Connection Pool ... 37

4.5.1. Problem ... 37

4.5.2. Solution & Discussion .. 37

4.5.3. Consequences ... 37

5. Conclusion .. 39

6. References .. 40

2014 EMC Proven Professional Knowledge Sharing 6

Table of Figures

Figure 1 Single- vs. Multi-Tenancy .. 7

Figure 2 Application-Instance-Per-Tenant on a Shared Hypervisor/OS 9

Figure 3 VM-Per-Tenant .. 10

Figure 4 App-Instance-per-Tenant Design ... 11

Figure 5 Shared Application .. 13

Figure 6 Options for Database-Per-Tenant .. 15

Figure 7 Database-Per-Tenant with Dedicated DB Servers ... 17

Figure 8 Private-Tables-Per-Tenant .. 19

Figure 9 Shared Database Tables Coupled With Shared Application 21

Figure 10 Tenant Discriminator in an Hibernate Entity ... 22

Figure 11 Customizable Objects ... 24

Figure 12 An Example of Private Table Layout (Src: [Aulbach_2]) 26

Figure 13 Basic Table Layout .. 27

Figure 14 An Example of Extension Table Layout (Src: [Aulbach_2]) 28

Figure 15 An Example of Universal Table Layout (Src: [Aulbach]) 29

Disclaimer: The views, processes or methodologies published in this article are those of

the authors. They do not necessarily reflect EMC Corporation’s views, processes or

methodologies.

2014 EMC Proven Professional Knowledge Sharing 7

1. Introduction

Multi-tenancy is a design concept in which a single shared instance of a system serves

multiple customers (or even multiple entities/organizations of a single customer), as

shown in Figure 1. As opposed to multi-tenant environments, in a single-tenant

environment, each tenant has its own application instance, deployed on its independent

infrastructure, either on premise or hosted by an Application Service Provider (ASP).

Tenant 2

Hardware Hardware Hardware

Oper. Sys. Oper. Sys. Oper. Sys.

Database Database Database

Application Application Application

Single Tenancy

Tenant 1 Tenant 2 Tenant 3

Hardware

Operating System

Database

Application

Tenant 1 Tenant 3

Multi-Tenancy

Figure 1: Single- vs. Multi-Tenancy

Software-as-a-Service (SaaS) is a software delivery method through which a hosted

software application services the application’s functions for multiple customers,

eliminating the need for individual customers to deploy and maintain the application on

premise. The relationship between multi-tenancy and SaaS is one of an enabler: multi-

tenancy enables SaaS.

While the notion of multi-tenancy pre-dates SaaS, techniques for implementing multi-

tenancy have become widely discussed only since the advent of SaaS. Despite the

plethora of articles available on the Web, many architects and designers find it difficult to

gain an understanding of the implementation nuances involved in implementing multi-

tenant software. This is where cataloging patterns for implementing multi-tenant SaaS

applications would help.

In Section 2 - Architecture Patterns, we cover coarse-grained patterns that address non-

local design concerns of a multi-tenant SaaS application – those that apply to most or all

of the application. Section 3 - Design Patterns covers patterns that address local design

2014 EMC Proven Professional Knowledge Sharing 8

concerns. Finally, in Section 4 - Implementation Patterns, we present some patterns that

are of significance during implementation of a multi-tenant application.

Patterns are organized under the following headings, except when they are grouped

together in logical groupings – for example, Design Patterns > Patterns for

Authentication.

Heading Description

Problem A description of the problem.

Solution A description of the solution, its applicability, and usage.

Discussion What pitfalls, implementation nuances, and techniques should one

be aware of when using the pattern?

How does this pattern relate to other patterns in this document? Are

there other names that people use to refer to this pattern?

Consequences What are the pros and cons of using the pattern?

2014 EMC Proven Professional Knowledge Sharing 9

2. Architecture Patterns

In this section, we cover coarse-grained patterns from the solution domain that address

non-local design concerns of multi-tenant SaaS applications. Each sub-section covers a

single architectural pattern.

2.1. Application-Instance-Per-Tenant

2.1.1. Problem

You want to host a SaaS application on shared infrastructure, but are not willing to use a

shared application. Reasons may be cost of converting an existing application to a

shared application, or time-to-market, or isolation.

2.1.2. Solution

Use tenant-specific application instances hosted on shared infrastructure, as depicted in

Figure 2.

Tenant 2

Hardware

Hypervisor / OS

Application
+ DB

Tenant 1 Tenant 3

Application
+ DB

Application
+ DB

Figure 2: Application-Instance-Per-Tenant on a Shared Hypervisor/OS

A tenant application instance may be hosted as a virtual machine, or on shared

hardware/OS, or even on separate physical hosts.

2.1.3. Discussion

Since application instances are provisioned on a per-tenant basis, on-boarding of new

tenants/customers can become error-prone and time consuming, especially if installation

and configuration steps are complex. Using a virtual machine to host the application

instance provides flexibility and other advantages typical to a virtual environment. Using

2014 EMC Proven Professional Knowledge Sharing 10

a template or virtual image as a basis for creating a virtual machine can greatly simplify

VM deployment. Hosting application instance on a virtual machine has an additional

benefit; it can make it easier to scale the application vertically as capacity demands

increase.

Application-instance-per-tenant instantiated as a virtual machine is referred to as “VM-

per-tenant”.

Virtual Machine

Tenant 1 DB
Application

Instance

Virtual Machine

Tenant 2 DB
Application

Instance

Virtual Machine

Tenant 3 DB
Application

Instance

Figure 3: VM-Per-Tenant

Further, a virtual appliance makes provisioning application instances even simpler. A

virtual appliance is a pre-packaged software image ready for deployment and running

inside a VM and typically consists of a guest operating system and application

components. The virtual appliance is typically optimized and pre-configured for the

application, so using it to deploy the application usually reduces the steps for application

instance provisioning. A virtual appliance may be referred to as a “Packaged Application

Instance”.

When using a VM-per-tenant as an Application-Instance-per-Tenant, additional security

and isolation measures may be necessary. Examples include enclosing a tenant’s

instance in a virtual perimeter, hardening the hypervisor and VMs, and so on.

Since per-tenant application instances are separated, while the service is shared (owing

to the nature of SaaS applications), the service needs a way to identify the tenant for

multiple reasons, one of them being allowing it to route the request to the appropriate

application instance. A tenant can be identified through an identifier (Tenant ID) from the

2014 EMC Proven Professional Knowledge Sharing 11

URL or the message header/payload, or through authentication. This is discussed in

greater length in Tenant Resolver.

To make this pattern more tangible, Figure 4 illustrates the relationship between the app-

instance-per-tenant and a representative set of upstream components.

Tenant 1
Mediation Layer

Mediation Controller

1

Te
n

an
t

Id
en

ti
fi

er

Te
n

an
t

A
u

th
en

ti
ca

to
r

C
o

n
te

xt

H
an

d
le

r
Tenant

Resolver

Application Layer

Application
Instance 1

Application
Instance 1

Application
Instance 3

2Tenant Context-
Based Router

Tenant
Metadata

Figure 4: App-Instance-per-Tenant Design

Component Responsibility

Tenant Identifier Identifies a tenant (from the URL or payload).

Tenant Authenticator Authenticates the client.

Tenant Context

Handler

Looks up pertinent tenant metadata, binds it to the current

thread as Tenant Context, and is passed to Application

instances if they need to be tenant-aware.

Tenant Resolver Determines the application instance to route to, based on the

tenant context.

Tenant Context-

Based Router

How does this pattern relate to other patterns in this

document? Are there other names that people use to refer to

this pattern?

2014 EMC Proven Professional Knowledge Sharing 12

2.1.4. Consequences

Among the advantages of this pattern include:

 It is easier to make existing applications multi-tenant using this pattern, since

there is little or no change required. This can also reduce time-to-market for

companies that want to SaaS-ify their existing products/applications.

 Isolation among tenants is strong, since applications instances for tenants are

separated. This addresses concerns such as data leakage, performance, and so

on. Similarly, performance or scalability issues can be tackled on a per-tenant

basis. Queries of one tenant are less likely to impact others.

 It is easier to perform common maintenance operations on a per-tenant basis.

For example, upgrades to the application may be applied to different tenants at

different times.

 This pattern makes it easy to customize the application on a per-tenant basis.

Customization needs may include tenant-specific field names, user interface

look-and-feel, business logic such as conditions for field updates, workflows, etc.

This pattern also suffers some major disadvantages:

 As number of tenants increase, the resource requirements and physical limits of

servers and platforms may reduce scalability.

 The overall cost is usually higher, since fewer resources are pooled (for example,

per-tenant memory and storage footprint may be high), and there are a number

of application instances to maintain. It is hard to leverage economies-of-scale for

reducing costs.

 Since upgrades occur on a per-tenant-basis, application upgrade cycles tend to

be lengthy and error-prone.

2014 EMC Proven Professional Knowledge Sharing 13

2.2. Shared Application

2.2.1. Problem

You want to host a multi-tenant SaaS application, and leverage economies-of-scale from

hosting a common application for a number of tenants.

2.2.2. Solution

Use a shared application to service requests from all tenants. Figure 5 illustrates a

shared application.

Tenant 1

Tenant 2

Tenant 3

Shared
Application

Database
(Shared or
Dedicated)

Tenant 2

Hardware

Operating System

Database

Application

Tenant 1 Tenant 3

Figure 5: Shared Application

2.2.3. Discussion

When the application is shared across tenants, there must be a way to parameterize the

application with a tenant context. This may include the application’s interfaces (both

API’s and GUI’s), enabled features based on subscription, database (in case the DB is

shared too), configuration files, log files, etc. The basis for parameterization can be a

tenant identifier that can take many different forms, some of which explained later.

Although the application itself may be shared, it does not automatically imply that the

database is shared as well. All three - Database-per-Tenant, Database Tables-per-

Tenant / Shared Schema, and Shared Database Tables – can be used in conjunction

with this pattern (Shared Application).

2014 EMC Proven Professional Knowledge Sharing 14

2.2.4. Consequences

Advantages of this pattern include:

 This approach generally reduces cost for the SaaS provider since there is greater

consolidation of resources used for servicing many/all tenants,.

 Simplified version upgrades simpler for the provider since all tenants can be

migrated to a new version simultaneously.

 In the basic case, the provider needs to maintain a single version of the

application, reducing overall maintenance overheads.

Disadvantages of this pattern include:

 Converting an existing on premise application using this pattern takes more work

since the application architecture requires change for supporting

parameterization.

 Isolation among tenants is much weaker. For example, queries from one tenant

may impact others, unless countermeasures for tackling potential resource

contention issues are taken.

 Common maintenance operations become more difficult to do on a per-tenant

basis. Examples include backups and restores and migration of tenants.

 All tenants must upgrade at the same time, which is not always feasible. This

reduces the ability of the SaaS provider to enhance the shared application.

 Customizations on a per-tenant basis are harder to do unless they are carefully

designed upfront.

2.3. Database-Per-Tenant

2.3.1. Problem

How to separate databases on a per-tenant basis, for addressing needs such as:

 Data isolation (for example, many companies in the banking and medical domain

insist on isolating their data.)

2014 EMC Proven Professional Knowledge Sharing 15

 Flexibility to extend the application’s data model to meet individual tenant’s

needs [Chong]

 Per-tenant restoration from backups

 Avoiding excessive table growth and related management issues, etc.

2.3.2. Solution

Store tenant data in separate databases (DB), regardless of whether the upstream

application is shared (Shared Application), or dedicated (Application-Instance-per-

Tenant). Databases may be separated using a either a “Dedicated DB Server” or a

“Shared DB Server” as shown in Figure 6.

Tenant 1
DB Server

DB

DB Server

DB

DB Server

DB

Tenant 1
DB Server

DB

DB

DB

Dedicated DB Server Shared DB Server

Tenant 2

Tenant 3

Shared
Application Tenant 2

Tenant 3

Shared
Application

Figure 6: Options for Database-Per-Tenant

2.3.3. Discussion

This approach is generally used in conjunction with shared computing resources and

application code [Chong] (Shared Application).

Since each tenant has its own database, a JDBC Connection Pool-per-Tenant is

required. When this pattern is used in conjunction with a Shared Application, for each

request, the application must identify the tenant and then resolve the right connection

pool for DB access. This also means that the application needs to maintain a mapping of

which tenant maps to which connection pool.

2014 EMC Proven Professional Knowledge Sharing 16

How do we handle shared data, if tenant databases are separate? One can have a

separate database for storing shared data. Whether Database-per-Tenant is used

together with Application-Instance-Per-Tenant or Shared Application, a common pool

can service all tenants. If there are tenant-specific writes to shared data, the application

will need to handle the distinguishing logic.

Variants of this pattern include:

 DBMS process per tenant running on a shared OS

 DBMS process per tenant running on its own VM on a shared hypervisor

Since each tenant has its own database (or even a DBMS or OS), isolation is high

among tenants. Access control mechanisms of OS, hypervisor (if applicable), and DBMS

can all be leveraged and applied on a per-tenant basis.

This pattern is also referred to as “Shared Machine” and “Separate Database” by some

authors.

Figure 7 illustrates the role of a Database-per-Tenant in a reference architecture of a

multi-tenant SaaS application.

2014 EMC Proven Professional Knowledge Sharing 17

Figure 7: Database-Per-Tenant with Dedicated DB Servers

In the figure above, a request originates from a client of Tenant 1. Within the application

layer, the SaaS application (“Application” in the figure) identifies the relevant tenant-

specific database (an instance of a database-per-tenant) to connect to using the Tenant

Resolver.

2.3.4. Consequences

Benefits of this approach include:

 It is easier to extend application’s data model to suit individual tenant’s needs.

[Chong]

 Restoration of data from backups for recovery purposes tend to become simpler,

due to tenant specific database objects.

 Data can be partitioned to achieve scalability goals. For example, one can place

different databases into different disks. It also makes it easier to avoid reaching

database physical limits due to excessive table growth.

2014 EMC Proven Professional Knowledge Sharing 18

 Allows for different data model versions for different tenants. Further, if a

database upgrade requires downtime, only an individual tenant or targeted set of

tenants are affected.

Liabilities of this approach include:

 Large number of tenants imply a large number of databases to manage.

 Lack of resource pooling at the database level, leading to proliferation of

equipment. Hardware costs tend to be higher than alternative approaches since

the number of tenants that can be hosted on a single DBMS server is limited by

the number of databases that the server can support [Chong].

 Maintenance is harder, since changes need to be applied in multiple databases.

 Upgrades of database are more complicated: upgrade for each tenant has to be

processed individually.

 More storage may need to be allocated per tenant, especially if the database

used pre-allocates storage [Stackoverflow]

2.4. Database-Tables-Per-Tenant / Private Schema

2.4.1. Problem

You want to isolate tenant data from that of others, but want to consolidate database

infrastructure for tenants.

2.4.2. Solution

Keep tenant’s data in tables that are private to an individual tenant. Tenants share a

database server, but each tenant has its own private tables (Private-Tables-Per-Tenant

with Shared Schema) or its own private schema (Private-Schema-Per-Tenant).

2014 EMC Proven Professional Knowledge Sharing 19

Tenant 1

Tenant 2

Tenant 3

Shared
Application

DB Server

DB

Figure 8: Private-Tables-Per-Tenant

2.4.3. Discussion

One choice to make while implementing this pattern is whether to use tables-per-tenant

on a shared schema, or a schema-per-tenant. For most DBMSs there is not much

difference with respect to allocated/consumed resources. This is because schemas are

usually implemented using a lightweight prefixing mechanism, and does not add much to

database overheads.

How do we restrict tenant access to data to the tables they own? Since the database is

shared, a database user may have access to all tables, regardless of which tenant the

tables belong to.

For better isolation, one may want to place each tenant’s data in its own physical table-

space. Doing so also makes it easier to migrate tenant’s data and to balance I/O

workload to different storage backends.

Also, a sort of “table template” can help in provisioning new tenants. Just create tables

from the template and modify any tenant-specific metadata.

Another concern that comes up during implementation is how to organize application

connection pooling. There are several options:

 Connection-pool-per-tenant: Create separate connection pools for the tenants.

Select the connection pool, based on Tenant Context associated with the tenant

(identified by the Tenant ID).

2014 EMC Proven Professional Knowledge Sharing 20

 Cross-tenant-connection-pool: Use shared connection pool for all tenants. How

do we use the shared connections, but still point to tenant-specific

schemas/tables? For example, one may use SQL SET SCHEMA upon using a

connection to point to tenant-specific schema. One implication of this approach is

that the application server must use a common and, potentially, a highly

privileged user to connect to the database.

2.4.4. Consequences

Advantages of this pattern include:

 This pattern represents a middle ground between strong data isolation of

Database Tables-per-Tenant and consolidation of Shared Database Tables. It

supports a moderate degree of data isolation for tenants concerned about

security risks of shared tables, while allowing the SaaS provider to leverage

common DB resources.

 Makes it easy to extend application’s data model to support individual tenant’s

need, should the need arise.

Disadvantages of this pattern include:

 Can lead to a lot of tables if the number of tenants is high. As number of tables

grow, so does maintenance overhead.

 Resource contention is more likely in this case than in Database-per-Tenant.

Isolation of tenant’s data is weaker that in Database-per-Tenant.

 It is harder to restore tenant data from backups, potentially increasing recovery

time. One may have to restore data on a temporary server and import tenant-

specific data into production.

2.5. Shared Database Tables

2.5.1. Problem

You want to leverage economies-of-scale by pooling database resources.

2014 EMC Proven Professional Knowledge Sharing 21

2.5.2. Solution & Discussion

This pattern (Shared Database Tables) coupled with Shared Application is what many

people think of with respect to multi-tenancy. This topology is illustrated in the Figure 9.

Tenant 1

Tenant 2

Tenant 3

Shared
Application

Tenant 2

Hardware

Operating System

Database

Application

Tenant 1 Tenant 3

Shared DB
Tables

Figure 9: Shared Database Tables Coupled With Shared Application

Since tables are shared across tenants, one needs a “tenant-identifying” (also referred to

as “tenant discriminator”) column in each database table. At run time, data is filtered

based on identified tenant, possibly by adding a default clause such as “where tenant_id

= ?”.

It may make sense to filter data not only for reads, but also for writes – inserts, updates,

deletes – for better tenant isolation. Doing so reduces the possibility of one tenant’s

request inadvertently modifying another tenant’s data.

Since the database tables are shared (and by implication, schema and database server

instances), connection pool may be shared too. We discuss that in Shared Connection

Pool.

Scalability and performance can be improved by partitioning the table using native

database partitioning mechanism, by the tenant discriminator column. It enables the

database query optimizer to access appropriate partitions given a tenant ID.

When using shared tables for tenants’ data, how do you customize tenant-specific data

fields? Solutions include Extension Table Layout, Universal Table Layout, among many

others.

Several ORM frameworks, APIs, and platforms support multi-tenancy. As an example,

Hibernate is called “multi-tenant aware”, and supports entity-level discriminator

2014 EMC Proven Professional Knowledge Sharing 22

parameter (as shown in Figure 10) that is passed along to the DB on the JDBC

connection for filtering data.

Figure 10: Tenant Discriminator in an Hibernate Entity

Java Persistence API (JPA) 2.1, Java EE, and JPA EclipseLink also have support for

multi-tenancy.

This approach is especially effective when the tenant-base is high, as benefits of

resource pooling can be reaped by the SaaS provider. However, if the tenant-base is

very large, the storage space requirements of shared tables may exceed the physical

limits of the DBMS server or Storage infrastructure.

2.5.3. Consequences

Advantages of this approach include:

 Better than Database-per-Tenant and Database Tables-per-Tenant / Shared

Schema with respect to resource pooling. Since the database tables are same

for multiple tenants, connection pools can be shared too.

 Ability to scale up is only limited by the rows and columns the database can hold.

In general, scaling up is easier here than in Database Tables-per-Tenant /

Shared Schema [Jacobs_Aulbach].

 Administration can be done by executing queries that range over the tenant

discriminator column [Jacobs_Aulbach].

 Performing analytics or reporting on customer data is easier.

 All tenants’ data is backed up together.

This approach is prone to a number of drawbacks as well, including:

 Since all tenants’ data gets backed up together, it is difficult to provide an offsite

copy of tenant-specific data to a tenant/customer.

2014 EMC Proven Professional Knowledge Sharing 23

 Restoring an individual tenant’s data for recovery purposes is much more

complicated. Restoration may require deletion of records for an individual tenant,

and reinsertion from a temporary database restored from a backup [Aulbach].

 Isolation among tenants’ data is much weaker than Database-per-Tenant and

Database Tables-per-Tenant / Shared Schema.

 Performance for one tenant may suffer due to resources consumed by other

tenants’ queries, administrative tasks such as migration for a tenant, locking

conflicts, etc.

 Any schema changes apply to all tenants, regardless of whether they need the

change. That may make it difficult to make enhancements to the schema, since

changes made for one tenant may not be relevant to another, and therefore may

resist any changes in order to avoid disruptions.

 Migration of a tenant requires queries against the operational system [Aulbach].

2.6. Metadata-Driven Architectures

2.6.1. Problem

How do you support extensions to objects in a shared multi-tenant application such that

the extensions result in different behaviors for different tenants?

2014 EMC Proven Professional Knowledge Sharing 24

2.6.2. Solution & Discussion

Objects that may require extensions are depicted in color in Figure 11.

Figure 11: Customizable Objects

They include:

 GUIs, APIs and forms: look-and-feel, form/API fields, API versions, etc.

 Configuration: policies, encryption keys, PKI certificates, application

configuration, user namespaces, backup configurations, and so on.

 Workflows

 Business logic and rules: e.g. business rules for applying discounts, etc.

 Data schemas and fields: e.g. tenant-specific data fields, tables, and even

relationships.

A desirable property of customizability in multi-tenant applications is that the behaviors

are modified through configuration only – not through application code changes –

especially when the tenant-base is growing fast, and many tenants are on-boarded

frequently. As Weissman et. al. [Weissman] note, for meeting these challenges “a

multitenant application must be dynamic in nature, or polymorphic, to fulfill the individual

expectations of various tenants and their users.”

2014 EMC Proven Professional Knowledge Sharing 25

To achieve customizability and extensibility on a per-tenant basis the application’s

objects must be partitioned into base and variable parts, where customizations are

required. The base parts instantiate tenant-specific objects at runtime for providing

tenant-specific UIs and workflows and using tenant-specific configurations, business

logic/rules, and data fields.

Readers may refer to a SalesForce.com paper [SalesForce.com] that provides a detailed

description of how Force.com’s metada-driven architecture supports

customizations/extensions on a per-tenant basis. All major objects – forms, workflows,

tenant-specific customizations, etc. – exist only as metadata in a Universal Data

Dictionary (UDD), in a few database tables that serve as heap storage [Weissman]. At

runtime, “virtual” application components are generated by materializing virtual table

data by considering corresponding metadata. Access to metadata by the runtime engine

is optimized and the metadata is stored in a cache to improve access performance.

2.6.3. Consequences

This pattern supports tenant-specific customizations/extensions through configuration.

Application complexity is high due to generic logic for runtime execution based on

metadata, metadata management, etc., and therefore requires careful design. If a SaaS

application needs to support only minor customizations for a subset of objects, there are

simpler approaches available that employ one or more of these: dependency injection,

Aspect-Oriented-Programming (AoP), generative programming, “Reserved Extended

Table Field” [Sitaram], “Dynamic Extended Sub-Table” [Sitaram], Isolating Filter, GUI

templates, “Multi-Entity Support” [Shroff], etc.

2014 EMC Proven Professional Knowledge Sharing 26

3. Design Patterns

In this section, we cover patterns that address local design concerns. Except for the last

sub-section, each sub-section covers a single pattern each. Section 3.8 - Patterns for

Authentication provides a brief summary of multiple authentication patterns.

3.1. Private Table Layout

3.1.1. Problem

You are using Database Tables-per-Tenant / Shared Schema for servicing multiple

tenants. How do you design a table layout that supports tenant-specific customizations?

3.1.2. Solution

Create a copy of a database table for each tenant. Parameterize name of the tenant-

specific table with a tenant-specific value, such as tenant ID or name.

An example is shown in Figure 12 (taken from [Aulbach_2]):

Figure 12: An Example of Private Table Layout (Src: [Aulbach_2])

Figure 12 shows “Account” tables for three different tenants. Notice the difference in field

set. This approach allows customization of tables on a per-tenant basis.

3.1.3. Consequences

Key consequences of this pattern include:

 There is no metadata overhead for the application – no additional fields are

required in the table for tenant identification.

 This approach allows for tenant-specific customizations, as shown in Figure 9.

2014 EMC Proven Professional Knowledge Sharing 27

 If the number of tenants and number of application tables is high, this layout will

quickly lead to a large number of tables.

3.2. Basic Table Layout

3.2.1. Problem

How do you store data for all tenants in shared tables?

3.2.2. Solution & Discussion

The simplest technique for implementing multi-tenancy using Shared Database Tables is

to discriminate among tenants’ data using a tenant identifying column, such as

“Tenant_Id” field in the example shown in Figure 13.

Figure 13: Basic Table Layout

Since the data for multiple tenants sits on the same table, discriminator/identifying

column must be used with application context to limit what a persistence context can

access.

3.3. Extension Table Layout

3.3.1. Problem

How do you support database table extensions for tenants such that multiple tenants

share a common extension, and there are multiple such types of extensions.

3.3.2. Solution & Discussion

Among the schema-mapping techniques described by Aulbach et al. in [Aulbach_2], is

an “Extension Table Layout”, which is a combination of a Basic Table Layout and Private

Table Layout. It splits the extensions into separate tables: the base table has columns

common to tenants, or the invariant fields. For tenants that require extensions, the

extension table holds the extension columns. The extension table is shared by all

tenants that require the same extension columns.

2014 EMC Proven Professional Knowledge Sharing 28

Figure 14: An Example of Extension Table Layout (Src: [Aulbach_2])

In Aulbach’s example in Figure 11, there is one base table “Account”, with fields

common to all tenants. There are two extensions of the Account table: Healthcare and

Automotive. The extensions are not relevant for tenant with ID 35. Tenant 17 uses

extension Healthcare, with fields Hospital and Beds. The gray columns represent the

overhead for the meta-data: tenant ID must be stored in both base and extension, since

multiple tenants share the tables. Row connects the extensions to the base.

Fetching data at runtime requires additional joins to fetch fields from the extension table.

If a query does not reference the extension table, there is no need to read it.

3.3.3. Consequences

Advantages of this pattern include:

 Provides better consolidation than the Private Table Layout. Fewer tables are

required for supporting extensions of similar types for multiple tenants.

Disadvantages of this pattern include:

 Application Edit/View master-detail page might be non-performant due to large

number of JOINS required to reconstruct logical source table.

 As different types of extensions come up, the number of tables may still

experience high growth.

2014 EMC Proven Professional Knowledge Sharing 29

3.4. Universal Table Layout

3.4.1. Problem

You want to use a table structure with immense flexibility.

3.4.2. Solution

Extending the concept of a Basic Table Layout, a Universal Table Layout provides a

generic structure, as shown in Figure 15, sourced from [Aulbach].

Figure 15: An Example of Universal Table Layout (Src: [Aulbach])

As depicted in Figure 15, a Universal Table Layout contains a number of generic fields:

Col1, Col2, and so on. These fields are usually made of a flexible type such as “String”,

to accommodate string representation of other types such as boolean (trye/false),

integer, etc. The “Tenant” field identifies data for a given tenant. The “Table” field refers

to the identifier of the table for that tenant.

This layout enables extending the same table in different ways for meeting tenant-

specific needs. Since data for all tenants for the table are stored in the same table, one

gets consolidation, apart from extensibility.

However, this layout results in a large number of “null” values as all fields/extensions

may not be applicable for all tenants. Also, fine-grained support for indexing is not

possible.

3.4.3. Consequences

Advantages of this approach include extensibility and consolidation, as explained above.

2014 EMC Proven Professional Knowledge Sharing 30

Disadvantages include:

 This layout may result in a large number of “null” values, and therefore a sparse

table, as all fields/extensions may not be applicable for all tenants and all tables.

 Using a generic data type reduces the ability to use DBMS indexing features for

fast access.

3.5. Tenant Context

3.5.1. Problem

Multi-tenant applications may sometimes require an object that encapsulates user/tenant

information or configuration/system information and references to services, providing

such information to other objects through the processing of a service request.

3.5.2. Solution

Use a context object to encapsulate necessary information to be shared throughout the

application. A context object can be designed for use through a single request, or a

single user session.

3.5.3. Discussion

A context object can be designed for use through a single request, or a single user

session.

A tenant context can simply encapsulate a tenant identifier (ID), or may contain

additional information such as authentication information, tenant status, reference for

tenant configuration, etc.

A tenant context manager object can be made responsible for managing tenant context

objects. It creates a new context, returns the context based on an identifier and destroys

older contexts.

3.5.4. Consequences

A tenant context encapsulates much context information, relieving other objects from

handling non-domain information.

2014 EMC Proven Professional Knowledge Sharing 31

3.6. Tenant Context-Based-Router

3.6.1. Problem

In some multitenant applications, requests need to be routed to the appropriate channel

or service so that it can be served.

3.6.2. Solution

Derived from a content-based router introduced by [Hohpe & Woolf], a tenant-context-

based-router routes a request to the appropriate service endpoint, based on the Tenant

Context. When using Application-Instance-per-Tenant, this routes a request to the

appropriate application instance.

3.6.3. Discussion

A router implementation reads the Tenant Context and then routes the request

according to the tenant. Some configuration mapping needs to be maintained between

the Tenant Context and the route that needs to be taken for the tenant. Whenever a

request comes to the router it redirects it to the configured endpoint.

Let’s consider an application where we need to have a different request processing

workflows for different tenant – meaning each tenant needs to be served differently for

the same service call. In this scenario, we can use a tenant context-based routing

technique where, on the basis of tenant, we can look up the route path from

configuration mapping and then redirect the request to that designated path.

Configuration mapping can have different routing rules. For instance, one set of tenants

route to one route while another set can follow a different route. Load balancing

techniques can also be used here in order to redirect tenants to different routes based

on the load they create. Routing rules can be exhaustive and should be written or

configured in a way which can be understood by the Tenant Context-based router.

3.6.4. Consequences

Tenant Context-based routing can be used if we want complete isolation in request

processing.

2014 EMC Proven Professional Knowledge Sharing 32

3.7. Tenant Resolver

3.7.1. Problem

A multi-tenant application needs to resolve/identify a tenant. Several processing steps

and persistence tasks are required to resolve the tenant.

3.7.2. Solution & Discussion

Tenant resolution is needed in multiple places. Here we consider only the entry point of

the SaaS application. Tenants can be identified through query parameters, host

headers, authentication, etc.

One way to identify a tenant is through authentication. The application would then be

available to all tenants through the same URL, such as http://saas.example.org. The

downsides of such an approach are:

 Until the user is authenticated, the application is generic. Only after

authentication is a tenant resolved and a tenant-specific user interface can be

made available.

 It becomes obvious to the user that the application is multi-tenant.

 This makes it difficult to have more than one identify provider (IdP). One needs to

identify the tenant prior to using a tenant-specific IdP for authentication.

However, if authentication occurs prior to identification, how do you determine

the appropriate IdP? Of course, one way to solve that problem is to ask for a

tenant code/name during authentication, apart from the user name. Although,

that increases overheads.

Other approaches for tenant resolution are discussed in Sub-Domain-Per-Tenant and

Sub-Directory per Tenant.

3.8. Patterns for Authentication

Patterns for application authentication include:

 Application Managed Authentication: In this case, a SaaS application maintains a

private user directory and manages user accounts [Taneja]. The downsides of

http://saas.example.org/
http://saas.example.org/

2014 EMC Proven Professional Knowledge Sharing 33

this approach include: a) The responsibility for managing user accounts

credentials falls on the SaaS application, forcing it to bear responsibilities that do

not lie in its business domain, and b) It forces application users to deal with yet

another set of credentials. Additionally, on-boarding new users, migrating users

to another provider or on premise, or de-provisioning them becomes more

difficult.

 Directory Synchronization: In this approach, the application’s private user

directory is synced with a tenant’s user directory [Taneja]. The private user

directory is then used by the application to authenticate the tenant’s users. Pros

and cons of this approach include:

o Tenant users get to use their existing credentials for accessing the SaaS

application.

o Directory synchronization can easily become a complicated and error-

prone process. This makes it difficult for administrators to manage the

sync process as the tenant base grows.

 Customer-Delegated Authentication: This approach uses a “token-based

authentication and SSO based on directory federation [Taneja]”. In this approach,

a local IdP of a tenant issues tokens, such as a Security Assertion Markup

Language (SAML) tokens, that are used by the SaaS provider to authenticate

users. This approach still requires managing the trust relationship between a

tenant and SaaS application and basic user account management, but relieves

the provider of managing user passwords and syncing directories [Taneja].

2014 EMC Proven Professional Knowledge Sharing 34

4. Implementation Patterns

In this section, we present some patterns that are significant during implementation of a

multi-tenant application. Each sub-section covers a single implementation pattern.

4.1. Isolating Filter

4.1.1. Problem

A multi-tenant application may use a variety of resources such as caches, configuration

files, log files, global static variables, etc. How do you limit access of each tenant to only

relevant resources?

4.1.2. Solution & Discussion

Use an isolating filter to restrict available resources for each tenant. When available, use

built-in filters. Examples of built-in filters include:

 A SQL sub-statement, i.e. “where tenant_id is xxx”

 Tenant-specific log file and format with Log4j Appender

 Tenant-specific prefix/namespaces for business objects in cache

 Tenant-specific files, folders, and files with a prefix

 Tenant-specific XML context/scope in the configuration file

4.2. Sub-Domain-Per-Tenant

4.2.1. Problem

You want to segment/isolate a SaaS application’s interface on a per-tenant basis.

4.2.2. Solution & Discussion

The solution entails segmenting the application into separate sub-domains - one for

each tenant. For example:

http://tenant1.example.org

http://tenant2.example.org

http://tenant1.example.org/
http://tenant2.example.org/

2014 EMC Proven Professional Knowledge Sharing 35

If the application communicates with clients using secure communication protocol

Hypertext Transfer Protocol Secure (HTTPS), a separate per-tenant certificate may need

to be installed on the server hosting the application’s interface, each identifying a single

sub-domain (such as tenant1.example.org) within a given domain (example.org).

Alternatively, one may install a wildcard SSL certificate that match all of a domain’s

single-level sub-domains.

Using this approach, an application can do first-level identification of the tenant. If a

request comes on tenant1.example.org for example, you know that the IdP for

authentication should correspond to tenant1’s. Similarly, a proxy can route the requests

to appropriate end-points based on the subdomain itself.

4.2.3. Consequences

Consequences of this pattern include:

 This pattern makes it easy to identify a tenant.

 User interfaces can be customized on a per-tenant basis.

 While enabling SSL, buying a wildcard certificate for multiple subdomains is

usually relatively expensive.

4.3. Sub-Directory per Tenant

4.3.1. Problem

You need to isolate entry points for tenants, but do not want to use Sub-Domain-Per-

Tenant due to some constrains; i.e. the high cost involved to procure a wildcard SSL

certificate.

4.3.2. Solution & Discussion

Segment the application by a tenant-specific sub-directory. You have the same domain

for all tenants, with a tenant-specific sub-directory. A variant is when tenant ID is passed

as a query parameter.

-- Tenant Id in the URL

https://example.org/tenant1

https://example.org/tenant2

https://example.org/tenant1
https://example.org/tenant2

2014 EMC Proven Professional Knowledge Sharing 36

-- Variant: Tenant ID in the query parameter

https://example.org?c=tenant1

The application itself needs to have separate directories for each tenant. All tenant-

related content needs to be available in these tenant-specific directories. Sometimes,

there may be redundant content.

First-level tenant resolution is required as the request itself points to tenant directory.

4.3.3. Consequences

Consequences of this pattern include:

 First-level tenant resolution is done, so using tenant-specific UIs and IdPs is

possible.

 A single SSL certificate identifying a single domain is used for all tenants, since

the same domain services all tenants.

 It becomes obvious to the user that the application is multi-tenant.

 Sub-Domain-Per-Tenant is considered more secure when compared to this

pattern (Sub-Directory per Tenant). For example, certain XSS vulnerabilities

cannot affect sub domain model because of the same origin policy. Further, this

pattern is more prone to Predictable Resource Location attack.

4.4. Connection-Pool-Per-Tenant

4.4.1. Problem

How do you separate database connections used by for different tenants?

4.4.2. Solution & Discussion

Maintain a separate connection pool for each tenant. When using Database-Per-Tenant,

any connection pooling will be per-tenant [Jboss]. Define a per-tenant connection pool

and select the right pool based on the tenant associated with the user (end user or client

application) sending the request.

https://example.org/?c=tenant1

2014 EMC Proven Professional Knowledge Sharing 37

When using a private-schema-per-tenant (see Private Schema), connection-pooling

would again be on a per-tenant basis. If the driver or the connection pooling mechanism

supports naming a schema for use for its connections, one could specify one schema

per connection pool to achieve Connection-Pool-Per-Tenant [Jboss].

4.4.3. Consequences

Having different connection pool provides control and flexibility in terms of how the

tenant app connects to database. Using connection pool per tenant has a lot of

advantages. If the application permits, we can have a choice of databases for the tenant.

Database-specific resources can be managed at tenant level. The number of database

connections/queries at tenant level can be controlled if quota on database resources per

tenant is applicable. Due to different connection pool, more stringent security measures

can be implemented as tenants have access to only their own connection pool. Tenant-

specific maintenance in this model is easier, as tenant-specific database instances can

be upgraded without affecting other tenant database instance.

4.5. Shared Connection Pool

4.5.1. Problem

How do you pool connection resources for all tenants?

4.5.2. Solution & Discussion

Use a shared connection pool for servicing all tenants.

When using a private-schema-per-tenant, tenants need access to separate schemas.

One way to achieve that is through a shared connection pool. Connections can point to

the database itself, using a default schema. However, at runtime, connections can be

altered using the SQL SET SCHEMA command (or its variant) depending on which

tenant the request is for. This approach provides a single connection pool for many

tenants.

4.5.3. Consequences

Consequences of this pattern include:

 Coarse-grained (and possibly a privileged admin user) DB user credentials must

be used, so that it has access to collocated tenants’ data.

2014 EMC Proven Professional Knowledge Sharing 38

 Administration overhead is lower since connection pool is shared.

 Connection pools can be consolidated to a fewer number.

 Not all databases support SQL SET SCHEMA.

2014 EMC Proven Professional Knowledge Sharing 39

5. Conclusion

Multi-tenant design enables SaaS and enables a SaaS provider to leverage economies

of scale by sharing resources across tenants. A range of options are available for

implementing multi-tenant software with varying degrees of resource pooling and

sharing. In this article, we introduced some known solutions for recurring problems and

issues that one may run into when using the solution.

The list of patterns we discussed is neither comprehensive nor exhaustive. The patterns

we selected for this article were among the most commonly used for multi-tenant

software, from our experience. Among those omitted are Chong’s [Chong] “Trusted

Database Connection”, “Tenant Data Encryption “, and “Secure Database Tables” and

Aulbach’s [Aulbach_2] “Pivot Table Layout”, “Chunk Table Layout”, and “Chunk folding”.

2014 EMC Proven Professional Knowledge Sharing 40

6. References

[Chong] Chong et. Al., "Multi-Tenant Data Architecture", MSDN, 2006

[Stackoverflow] http://stackoverflow.com/questions/12056145/virtual-segregation-of-

data-in-multi-tenant-mysql-database?rq=1

[Aulbach] Stefan Aulbach, Schema Flexibility and Data Sharing in Multi-Tenant

Databases

[Aulbach_2] Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and

Jan Rittinger. Multi Tenant Databases for Software as a Service:

Schema-Mapping Techniques. In Wang (2008), pages 1195-1206.

ISBN 978-1-60558-102-6.

[Hohpe & Woolf] Hohpe, Gregor and Woolf, Bobby, Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging Solutions, Addison

Wesley (2003), ISBN 0-321-20068-3

[Stackoverflow_2] http://stackoverflow.com/questions/8340721/multiple-schemas-

versus-enormous-tables/8343142#8343142

[Jacobs_Aulbach] Dean Jacobs and Stefan Aulbach, “Ruminations on Multi-Tenant

Databases”

 http://d-nb.info/1019589965/34

[Schaffner] Schaffner, Jan, "Multi-Tenancy for Cloud Based In-Memory Column

Databases", Srpinger, ISBN: 978-3-319-00496-9

[Weissman] Craig D Weissman et. al, The Design of the Force.com Multitenant

Internet Application Development Platform,

http://cloud.pubs.dbs.uni-leipzig.de/sites/cloud.pubs.dbs.uni-

http://stackoverflow.com/questions/12056145/virtual-segregation-of-data-in-multi-tenant-mysql-database?rq=1
http://stackoverflow.com/questions/12056145/virtual-segregation-of-data-in-multi-tenant-mysql-database?rq=1
http://d-nb.info/1019589965/34
http://d-nb.info/1019589965/34
http://stackoverflow.com/questions/8340721/multiple-schemas-versus-enormous-tables/8343142#8343142
http://stackoverflow.com/questions/8340721/multiple-schemas-versus-enormous-tables/8343142#8343142
http://d-nb.info/1019589965/34
http://cloud.pubs.dbs.uni-leipzig.de/sites/cloud.pubs.dbs.uni-leipzig.de/files/p889-weissman-1.pdf

2014 EMC Proven Professional Knowledge Sharing 41

leipzig.de/files/p889-weissman-1.pdf

SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.

Copyright 2009 ACM

[Jboss] http://docs.jboss.org/hibernate/orm/4.1/devguide/en-

US/html/ch16.html

[Shroff] Shroff, Gautam. Enterprise Cloud Computing: Technology,

Architecture, Applications. Cambridge University Press. (2010)

[Mietzner] Mietzner, et. Al, "Horizontal and vertical combination of multi-tenancy

patterns in service oriented applications", Enterprise Information

Systems

[Sitaram] Sitaram et. al., Moving To The Cloud: Developing Apps in the New

World of Cloud Computing. Syngress Publishing. (2012)

[Chong_2] Frederick Chong and Gianpaolo Carraro, "Architecture Strategies for

Catching the Long Tail" (2006), http://msdn.microsoft.com/en-

us/library/aa479069.aspx

[Gao] Bo Gao et. al., "Develop and Deploy Multi-Tenant Web-delivered

Solutions using IBM middleware: Part 4: Design patterns for sharing

resources in single instance multi-tenant applications",

http://www.ibm.com/developerworks/webservices/library/ws-

multitenantpart4/

[Krebs] Rouven Krebs, "Architectural Concerns in Multi-Tenant SaaS

Applications"

[Poddar] Indrajit Poddar, “Develop and Deploy Multi-Tenant Web-delivered

Solutions Using IBM Middleware: Part 5: A mediation approach for

multi-tenancy and three implementation options”,

http://cloud.pubs.dbs.uni-leipzig.de/sites/cloud.pubs.dbs.uni-leipzig.de/files/p889-weissman-1.pdf
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html/ch16.html
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html/ch16.html
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://www.ibm.com/developerworks/webservices/library/ws-multitenantpart4/
http://www.ibm.com/developerworks/webservices/library/ws-multitenantpart4/

2014 EMC Proven Professional Knowledge Sharing 42

http://www.ibm.com/developerworks/webservices/library/ws-

multitenantpart5/

[Taneja] Deepak Taneja, “Identity And Access Management From The SaaS

Application Perspective”, CloudTweaks, retrieved from

http://www.cloudtweaks.com/2013/05/identity-access-management-

perspective-saas-application on 15-Jan-2014

[SalesForce.com] The Force.com Multitenant Architecture: Understanding the Design

of SalesForce.com’s Internet Application Development Platform,

SalesForce.com

EMC believes the information in this publication is accurate as of its publication

date. The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC

CORPORATION MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND

WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND

SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires

an applicable software license.

http://www.ibm.com/developerworks/webservices/library/ws-multitenantpart5/
http://www.ibm.com/developerworks/webservices/library/ws-multitenantpart5/
http://www.cloudtweaks.com/2013/05/identity-access-management-perspective-saas-application%20on%2015-Jan-2014
http://www.cloudtweaks.com/2013/05/identity-access-management-perspective-saas-application%20on%2015-Jan-2014

