
SSL/TLS SECURITY AND TROUBLESHOOTING

Aditya Lad
Associate Principal Engineer
EMC
Aditya.lad2@emc.com

Prasoon Dwivedi
Software Engineer
mitprasoon@gmail.com

mailto:Aditya.lad2@emc.com
mailto:Prasoon.dwivedi@emc.com

2015 EMC Proven Professional Knowledge Sharing 2

Table of Contents

Introduction .. 3

History of SSL .. 4

Major versions of SSL/TLS and highlights .. 4

Confidentiality, Integrity, and Authentication in TLS ... 7

Confidentiality with Encryption .. 7

Integrity using MAC .. 8

Authentication with Certificates ... 8

Anatomy of SSL/TLS communication at the Packet level ... 9

SSL/TLS Protocol structure ...16

1. Handshake Protocol (ClientHello, ServerHello, Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone) ...17

2. Change Cipher Spec Protocol ..23

3. Application Data Protocol ...23

4. Alert Protocol ..23

A note on other encrypted services and Protocols ..23

Difference between SSH and SSL ..25

Understanding Cipher-suites ...26

Testing SSL/TLS for Security ..28

SSL providers and Libraries ..37

Checklist: Popular and common attacks in recent years ...39

Recommendations for selecting, configuring, and installing TLS server and clients42

Summary and Conclusion ...44

References ...46

Disclaimer: The views, processes or methodologies published in this article are those of the

authors. They do not necessarily reflect EMC Corporation’s views, processes or methodologies.

2015 EMC Proven Professional Knowledge Sharing 3

Introduction

We live in a world of digital communication and cryptography has become an essential part of it.

The importance of cryptography and encrypted communication was highlighted best in World

War 2, when allied cryptographers were able to break the encryption techniques used by the

axis powers. The stories are glorious and workings of ENIGMA still fascinate crypto-scientists

because it helped changing the course of World War 2. The attempts to break an encrypted

communication have existed since the beginning of encryption. The worst nightmare of a user of

crypto services is that someone super smart has secretly found a way to read their encrypted

messages. The vastness of attacks possible today on a crypto-based eco system makes it

tough to understand and evaluate the practical risk involved. It is not a surprise: it is challenging

even for security experts to keep up with new forms of crypto attacks, understand their

complexity and working, and evaluate the practical risks involved. Although the science of

encryption-decryption commonly known as cryptography is very old and detailed, we will cover

brief parts of it that are related to SSL.

As far as modern day cryptography is concerned, SSL/TLS (Secure Socket Layer/Transport

Layer Security) is a widely used protocol and a preferred way for encrypting network

communication between two systems. The SSL/TLS system has existed since the mid-90s and

has undergone a number of changes for better security in times where the computing power of

systems has risen exponentially. Even though the SSL/TLS eco-system is widely used and has

been there for some time, its internal workings can still be called complicated and a beginner

always has to struggle his/her way out while solving an SSL-related problem. A very recent

example of such a situation was the Heartbleed bug where the entire internet – especially the IT

world – (i.e. System admins, developers, testers) seemed to be in a state of chaotic confusion

on what is the source and real extent of the problem. This article presents a perspective on SSL

security that helps a day to day developer or a tester become familiar with SSL/TLS jargon and

to know what, how, and where to look while solving an SSL/TLS related problem. The focus of

this article is not to explain SSL/TLS or cryptography in an academic sense, but to present a

birds-eye view of the intricacies involved and important points from a practical IT perspective.

2015 EMC Proven Professional Knowledge Sharing 4

History of SSL

The development of SSL began in the early 1990s by Netscape and the first draft was submitted

for SSL v2.0 in 1995. SSL v2.0 had major security flaws which led to the making of SSL v3.0.

The draft for SSL v3.0 was submitted to the IETF in 1996. In Netscape’s words1, SSL v3.0 is a

security protocol that prevents eavesdropping, tampering, or message forgery over the Internet.

The IETF published RFC 61012 (Request for Comment) as specification for SSL v 3.0. SSL

began to be called TLS and the next version of TLS came in 1999 with RFC 22463
. In a nutshell,

SSL v 3.0 and TLS 1.0 do not have differences that a day to day developer has to be concerned

with, but it is better to use TLS 1.0. The next version of TLS which is TLS 1.1 came into

existence in 2006 and is defined in RFC 43464. TLS 1.1 has improvements over TLS 1.0. The

next version, TLS 1.2, was released in 2008 and is defined through RFC 52465. TLS 1.2 has

major changes since TLS 1.1 and it includes support for newer and more secure cryptographic

algorithms. TLS 1.3 is still in draft state. RFC 61766 has updates for all the SSL/TLS versions

and the RFCs 2246 (SSL V 3.0), 4346 (TLS 1.1), 52465 (TLS 1.2).

Though we may use SSL or TLS interchangeably in this article, it does not mean we are

referring to a specific version but the entire SSL/TLS protocol collectively.

Major versions of SSL/TLS and highlights

Figure 1 displays the timeline of released SSL/TLS versions. SSL/TLS has undergone a lot of

changes since its inception and is now being used to secure a number of application layer

protocols. For an average user (i.e. IT admin or a software developer), the features and

changes can be a little overwhelming. A lot of changes are related to internal workings, better

security, and stronger cryptography along with improvements on older designs. For an average

software developer who just wants to secure his application layer, the changes in SSL/TLS do

not mean a large change in the application behavior.

2015 EMC Proven Professional Knowledge Sharing 5

Figure 1: Timeline of SSL/TLS versions

2015 EMC Proven Professional Knowledge Sharing 6

Until the discovery of the POODLE (Padding Oracle On Downgraded Legacy Encryption)

vulnerability, SSL v3 was a fairly popular protocol, but post-POODLE, SSL v3 comes under the

insecure category. Both SSL v3 and TLS 1.0 which are not very different from each other are

vulnerable to the CBC mode attacks. TLS 1.1 has protections for attacks against the CBC mode

and is considered a secure protocol. TLS 1.2 is the best and latest option available.

 A report7 by SSLLabs presented in Black Hat 2010 showed the adoption and statistical usage

of SSL protocols over the internet. This is an excellent report for someone who is interested in

knowing the state of SSL issues affecting the internet in general. Considering the timeline of

TLS version release, the next figure (Figure 2) from the report gives an approximate idea of how

well the internet adopts an SSL protocol. Though the data is from 2010, it may indeed come as

a surprise that almost 50% of the websites covered in the report were still using SSL version 2.

Figure 2: SSLLabs report
7

2015 EMC Proven Professional Knowledge Sharing 7

Confidentiality, Integrity, and Authentication in TLS

There are three main aspects to SSL/TLS which provide security over the network. There is

nothing new about confidentiality, integrity, and authentication and these are the pillars of any

secure communication. There are a few things one must keep in mind while working with

networks. There is ALWAYS a possibility of someone snooping on your communication and it

can be hard to detect it, hence we always need to ensure confidentiality, integrity, and

authentication in our communications. Simply put:

Confidentiality – No one except the sender and receiver should be able to decrypt the

messages.

Integrity – If someone other than the sender tries to change the content of the message, the

receiver should be able to detect it.

Authentication – Sender and receiver (if required) should be able to correctly authenticate

each other.

Although we explain cipher-suites in later sections, it is important to understand these three

pillars in a practical way by taking the example of an SSL/TLS cipher-suite. A cipher-suite is a

collection of different ciphers that are used in an SSL/TLS communication. Let’s say we have an

existing SSL/TLS communication where the negotiated cipher-suite is

TLS_DHE_RSA_WITH_AES_128_CBC_SHA.

Confidentiality with Encryption

Encryption algorithm (like AES_128_CBC in TLS_DHE_RSA_WITH_AES_128_CBC_SHA) of

the cipher suite negotiated during SSL handshake is used to encrypt the application data

transferred between the server and the client. Using the pre-master secret and random values,

a master secret is generated. Using a Pseudo Random Function and the master secret, two

keys are generated for server and client respectively, server write key and client write key. The

server encrypts the application data using server write key and sends it to the client. This

encrypted data can be decrypted only by using the server write key. In the same way client

encrypts the application data using client write key and sends it to the client. This encrypted

data can be decrypted only by using the client write key.

2015 EMC Proven Professional Knowledge Sharing 8

Integrity using MAC

The MAC algorithm (like SHA stands for SHA-1 in

TLS_DHE_RSA_WITH_AES_128_CBC_SHA) defined in the negotiated cipher suite is used to

provide message integrity. For this purpose two MAC keys are also calculated along with the

client and server write keys: one for the server, the other for the client. Both server and client

are aware of each other’s MAC keys. The sender calculates the MAC using its keys and sends

it to the receiver along with the application data after encrypting both data and MAC. Upon

receiving the package (encrypted data and MAC), the receiver decrypts the data and calculates

the MAC using server MAC key. The receiver then validates the integrity of the message by

matching the received MAC and calculated MAC.

Authentication with Certificates

Authentication in SSL/TLS (the RSA in TLS_DHE_RSA_WITH_AES_128_CBC_SHA is

responsible for certificate authentication here) is achieved by the use of public key certificates.

During SSL handshake the server presents its public key certificate to the client for identity

verification. The negotiated cipher suite and the extensions define the exact method with which

server authentication is performed by using certificates. Generally, authentication using

certificates is performed by validating the digital signatures present in the certificates.

Client authentication by server is optional and happens only if the server requests it. Like server

authentication, the client authentication is also dependent on the negotiated cipher suite and

extensions during handshake.

Certificates are important components of SSL and caution must be exercised while configuring

and installing them. It is recommended to configure a SSL server with multiple type certificates

with public key and corresponding private key for interoperability. For SSL server deployments it

is highly advisable to use a CA-issued certificate which publishes the revocation information in

a Certificate Revocation List (CRL). Self-signed certificates are a strict no-no, especially if the

communication is over the Internet.

The client trusts the server on the basis of policies, procedures, and security controls used to

issue server public key certificate. The certPolicies extension of X.509 v3 certificate is used to

represent these policies, procedures, and security controls. For details, refer RFC52808 and

RFC68189.

2015 EMC Proven Professional Knowledge Sharing 9

Authentication with PSK

In cases where certificates are not used for authentication, a pre-shared key or secret is used

for authentication. However, this adds risks in terms of key management and security of the pre-

shared key itself. The pre-shared key needs to be shared manually to both client and servers. If

you are interested in knowing more about the pre-shared key cipher-suites, RFC548710 is a

recommended read.

Anatomy of SSL/TLS communication at the Packet level

For understanding and mitigating SSL/TLS related issues, bugs, and vulnerabilities it is

important to understand how SSL/TLS works in a practical way. Below is the summary of the

working of SSL/TLS protocol based upon RFC 5246 (TLS 1.2). Figure 3 shows the position of

SSL/TLS protocol relative to the TCP/IP suite.

SSL/TLS protocol was developed to provide security between sockets at transport layer and the

applications accessing these sockets to access the network.

Figure 3: SSL/TLS relative to the TCP/IP layer

APPLICATION LAYER

FTP, HTTP, Telnet, DHCP, LDAP, SNMP, SMTP

SSL/TLS RECORD LAYER

SSL/TLS HANDSHAKE LAYER

Handshake|Change CipherSpec|Alert|Application

TRANSPORT LAYER

TCP, UDP

INTERNET LAYER

IP, ICMP, IPSec

LINK LAYER

ARP, PPP, MAC

SSL/TLS

2015 EMC Proven Professional Knowledge Sharing 10

Continuing the practical understanding of SSL/TLS, we take the example of a simple HTTPS

session captured using the network capture tool, Wireshark. The entire conversation captures

15 packets, which include the initial TCP 3-way handshake, followed by SSL/TLS handshake

sequence and encrypted data exchanges. In Figure 4, the topmost row shows the description of

the column. The leftmost column is the serial number of the packet, followed by source IP

address which is our client browser machine (192.168.32.1), destination IP address which is the

SSL server (192.168.32.146), the protocol identified, packet length, and general information on

what is inside the packet.

1. TCP Handshake [Packet #1-3, Figure 4]

The first three packets display the standard TCP handshake made by the browser with

the SSL web server. This is a standard way that a TCP connection is made between two

computers and it is not related to SSL.

Figure 4: Initial TCP 3-way handshake

2015 EMC Proven Professional Knowledge Sharing 11

2. Client Greetings to the server [Packet #4-5, Figure 5]

The 4th packet starts the SSL protocol with the client (browser) sending a Client Hello

message to the SSL server. The ClientHello is a way for the client to greet the server

and it contains important details related to the Client’s SSL choice like the TLS version it

wants to use, random value, session values, supported ciphers, supported compression

methods, etc. Figure 5 also highlights some of the attributes sent in the Client Hello

message. The 5th packet is an ACK (acknowledgement) packet from the server in

response to the ClientHello.

Figure 5: Client Hello message

2015 EMC Proven Professional Knowledge Sharing 12

3. Server Greetings [Packet #6, Figure 6]

The 6th packet is the ServerHello message sent by the SSL server and it contains

choices, attributes, and certificate sent by the server along with the usage of server key

exchange mechanism.

Figure 6: Server Hello message

2015 EMC Proven Professional Knowledge Sharing 13

Figure 7 additionally displays the Server Hello fields in detail and the cipher-suite chosen by

the server for the SSL communication. The fields show what version of TLS the server is

going to use, whether it supports compression (which is null), and details about the

extensions. Note, the choice of CBC mode ciphers along with a vulnerable SSL/TLS version

like SSLv3 or TLS 1.0 can make scanners report this connection, vulnerable to attacks

prevalent against CBC mode ciphers (i.e. BREACH, POODLE etc.). The compression

method value if enabled also makes the server vulnerable to attacks like CRIME and TIME.

 Figure 7: Details of the Server Hello message

2015 EMC Proven Professional Knowledge Sharing 14

4. Certificate verification, Client Key exchange [Packet #7, Figure 8]

 The 7th packet sent by the client has the Client Key exchange, Change cipher spec protocols.

Figure 8: Certificate verification by Client

2015 EMC Proven Professional Knowledge Sharing 15

5. Client starts encrypting data [Packet #8-9, Figure 9]

The 8th and 9th packet is where the client starts sending encrypted Application Data to the

server.

Figure 9: Client encryption begins

2015 EMC Proven Professional Knowledge Sharing 16

6. Server Changecipherspec and encryption [Packet #10 onwards, Figure 10]

The 10th packet is where the server generates a new session ticket, change cipher spec,

and starts encrypting data from its side. The Application data protocol comes into the

picture now and both the client and server start exchanging encrypted data.

Figure 10: Server change cipher spec

SSL/TLS Protocol structure

Now that we have a basic idea of the anatomy of an SSL/TLS communication, the following

defines briefly the important structural and commonly referred parts of the SSL/TLS protocol

along with images of packet captures to show how to locate these fields in a network packet.

TLS Record Protocol

The record layer communicates directly with the transport layer. This sub layer of the SSL/TLS

protocol is responsible for performing fragmentation of messages into manageable blocks,

compression, encryption, and then transmitting the blocks to the lower layer. This layer also

receives the data from transport layer; decompresses and decrypts it; rearranges the blocks;

and sends them to the higher-level application protocols.

2015 EMC Proven Professional Knowledge Sharing 17

TLS Handshaking Protocols

This is a layered protocol containing four sub protocols. At each layer, there are fields for

version, content type, length, and content. The four sub protocols are:

1. Handshake protocol

2. Change Cipher Spec Protocol

3. Application Data Protocol

4. Alert Protocol

Figure 11: SSL/TLS Sub protocols

1. Handshake Protocol (ClientHello, ServerHello, Certificate,
ServerKeyExchange, CertificateRequest, ServerHelloDone)

The Handshake protocol is used to negotiate attributes for a secured session between a client

and the server. The client’s way of greeting the server is through the ClientHello message while

the server’s way of replying to the client greeting is the ServerHello message.

2015 EMC Proven Professional Knowledge Sharing 18

o ClientHello - This message is sent from the client to the server whenever it tries to

connect to the server or in response to a HelloRequest message or whenever it wants to

re-establish security parameters in an existing connection.

Figure 12: ClientHello

 ProtocolVersion: The version of TLS that a client wants to use.

 Random: A random structure containing client’s time and 28 bit random number

generated by the client.

 SessionID: The ClientHello message contains a session identifier which is null

for a new connection. Session identifier can be same as that of an earlier

connection or an existing connection.

 CipherSuite: It contains the list of algorithms supported by the client arranged in

client preference. Each cipher suite is a combination of key exchange algorithm,

2015 EMC Proven Professional Knowledge Sharing 19

bulk encryption algorithm, a MAC, and a PRN.

 CompressionMethod: It lists the client supported compression methods sorted

by client preference.

 Extensions: The client may request additional functionality from the server by

using the extension field.

2015 EMC Proven Professional Knowledge Sharing 20

o ServerHello - Upon receiving ClientHello message, the server selects appropriate set of

algorithms (protocol, cipher suite, and compression method) and responds with a

ServerHello message. The structure of ServerHello message is similar to ClientHello

message.

 ProtocolVersion: The server will send the version of TLS the client wants to use

if it supports that version or it will send an older version of TLS

 Random: A random structure containing server’s time and 28 bit random number

generated independently by the server.

 SessionID: On receiving a ClientHello message with non-null SessionID, the

server checks its session cache. If a match for the SessionID is found, the server

may resume the same using the previously established credentials session or

may start a new session. The server may also return a null SessionID to indicate

the client that the session will not be cached and hence cannot be resumed.

 CipherSuite: It contains a single cipher suite selected by the server from the list

of cipher suites sent by the client in the ClientHello message.

 CompressionMethod: It contains a single compression method selected by the

server from the list of compression methods sent by the client in the ClientHello

message.

Figure 13: ServerHello message

2015 EMC Proven Professional Knowledge Sharing 21

o Certificate - If the agreed upon key exchange algorithm uses certificates, the server

immediately sends a server certificate message to the client. This message contains the

server’s certificate chain.

Figure 14: Certificate details

o ServerKeyExchange - This message is only sent by the server. It conveys

cryptographic information to the client needed for communicating pre-master secret.

2015 EMC Proven Professional Knowledge Sharing 22

o CertificateRequest - Depending on the negotiated cipher suite, a non-anonymous

server can request for the client certificate form the client. This message, if sent, will

immediately follow the ServerKeyExchange message.

o ServerHelloDone - This message is sent by the server to indicate to the client that it is

done with its part of key exchange and the client can now proceed with its part of the key

exchange. On receipt of this message the client should verify the server certificate and

make sure that the parameters sent in server hello message are valid and acceptable.

o Client Certificate: This is the first message sent by the client on receipt of the

ServerHelloDone message. This message is sent only if certificate is requested by the

client.

o ClientKeyExchange: This message is sent immediately after the client certificate (if it is

sent) or immediately after the ServerHelloDone message. This message sets the

premaster secret either by using RSA or Diffie-Hellman mechanisms. At the end of this

message both client and server share the same premaster secret.

2015 EMC Proven Professional Knowledge Sharing 23

2. Change Cipher Spec Protocol

The ChangeCipherSpec message is sent by both the client and the server to inform each other

that for further communications the negotiated CipherSpec and keys will be used.

3. Application Data Protocol

The record layer fragments, compresses, and encrypts the application data based upon the

state of the connection.

4. Alert Protocol

Alert messages convey the severity of the message along with its description. There are two

types of alert messages; warning and fatal. Alert messages are used for error handling and

closing the connection gracefully or terminating the connection in case of a fatal error.

A note on other encrypted services and Protocols

A few other protocols and services that use encryption are described below. These protocols

are often referred to while talking about SSL/TLS in general.

IPSec – IPSec (Internet Protocol Security) provides encryption at the IP layer (Network layer of

the OSI model). While SSL/TLS services work at the Presentation layer, IPSec specifically

operates at the IP layer of the protocol suite. Thus when used, it provides encryption services

for all protocols operating at the TCP and application layer. A typical example of usage for IPsec

is the VPN tunnel which provides end-to-end encryption for all the network communication

between two hosts. So what makes it different from SSL/TLS on a broad level? Unlike SSL/TLS,

IPSec operates at the kernel level and cannot be implemented within the application code

boundary and hence the application does not have any control over its security parameters.

2015 EMC Proven Professional Knowledge Sharing 24

SSL/TLS allows sufficient flexibility to the client-server model applications to have a finer control

of their own security.

DTLS – DTLS or the Datagram Transport Layer Security is a protocol similar to SSL/TLS but

operating over datagram packets, also known as the UDP traffic. Since UDP is a stateless

protocol and unlike TCP is not a reliable mode of communication, slight and minimal changes

are made in TLS protocol so that a majority of its features can be reused. The resultant protocol

is named DTLS and is defined in RFC634711. An example of software is by net-snmp package

which uses UDP for sending its traps. Net-snmp can be configured to utilize DTLS for

encrypting its UDP traffic.

WEP/WPA/Wireless Security - WEP and WPA protocols are meant to provide security over

wireless networks. The wireless protocols encapsulate the entire application and transport layer

traffic and typically form an encrypted tunnel between the client computer/device and the WiFi-

access point. The security mechanisms are defined in IEEE 802.1x standards. Parts of wireless

security can be considered similar to SSL/TLS mechanisms of authentication. However,

wireless security is a far more complex subject due to the added complications of wireless

technologies, hardware limitations of router devices, and greater vulnerability to eavesdropping

as compared to wired technologies.

SSH – SSH or secure shell is an application level security mechanism which is primarily meant

to secure the communication while connecting to Unix/Linux shells. Before the use of SSH,

remote terminal connection protocols like Telnet and FTP used to transmit the entire content,

including the passwords, in plaintext. The SSH protocol provides a way to authenticate the client

and server by the user of public and private keys. SSH also supports tunneling and can be

configured to forward existing port specific non-encrypted communication.

SMTPS/LDAPS/POP3S, etc.

There are a number of other traditional application layer protocols just like HTTP that do not

have a built-in encryption mechanism, but can effectively use SSL/TLS encryption to secure

their communication. So when HTTP is over SSL, it is named as HTTPS. Some examples

include: SMTP (Simple Mail Transfer Protocol - used to send emails) which can use SMTPS for

encrypted channel, POP3/POP3S (Post Office Protocol 3 - used to receive emails),

IMAP/IMAPS (Internet Message Access Protocol), LDAP/LDAPS (Lightweight Directory Access

Protocol), etc. Typically, these protocols use a standard port (i.e. port 25 for SMTP) for their

2015 EMC Proven Professional Knowledge Sharing 25

communication and a different port for an SSL/TLS enabled counterpart (i.e. port 465 for

SMTPS). However, there is another way to enable SSL/TLS communication on an existing non-

SSL port. StartTLS is a way to convert an existing non-encrypted, insecure communication into

an SSL/TLS secured one. The client can connect normally to a server and communicate in

plaintext until it decides to upgrade the connection to an SSL one by issuing the STARTTLS

command.

Difference between SSH and SSL

There is often confusion between the SSH and SSL service when we talk about secure network

communication. The confusion is at its prime when vulnerabilities are discovered in SSL (or let’s

say an SSL library like OpenSSL) and IT folks are wondering if the vulnerabilities also affect

SSH. A more prominent question asked by beginners these days is that if SSH and SSL are

similar in capabilities, then why do we have two protocols? Now that SSL/TLS is so ubiquitous

and its layers come as an extension of almost every other application, it could be hard to

understand the real purpose it was developed for. It is best to understand the differences when

you go through the history and the purpose of development for these protocols and the

evolutionary part of computers during the 90s.

Historically, it would be very easy to understand the differences between SSH and SSL because

they both were born to provide solutions to different problems.

In simple terms, SSH or the Secure Shell is an application layer protocol aimed at providing

encrypted network communication for the traditional ‘not-so-secure’ telnet which opens a remote

shell for Unix/Linux systems. All the older services like telnet, ftp, rcp from Unix days never used

to encrypt data and it is trivial to sniff plaintext passwords and transferred data through these

protocols. In earlier days, before the beginning of World Wide Web and web browsers,

programs like telnet and ftp were extremely popular. While SSH is aimed at securing telnet and

other Unix services like ftp, rcp, etc., SSL was more focused on securing the web-based

communication in the advent of e-commerce possibilities. The efforts towards the development

of SSL were initiated by Netscape which was pioneering browser development in the 90s.

SSH also supports tunneling or port forwarding where incoming data on a port is encrypted and

forwarded by the SSH server. SSH and SSL do not have a direct relationship as far as their

working mechanism is concerned. However, since both provide cryptographic services, some

conceptual aspects of their operations may appear similar. For example, SSL/TLS connections

2015 EMC Proven Professional Knowledge Sharing 26

require a trusted certificate, whereas SSH connections present a public fingerprint of the

machine you are connecting to. Both of them intend to provide a means to the user to identify

and trust the service they are connecting to.

Tunneling is another feature where SSL/TLS and SSH are conceptually similar, however the

implementation varies. While acting as a tunnel, SSL/TLS does not care what application lies

underneath; it could be HTTP, SMTP, LDAP, or anything. SSH has a tunneling capability where

it can forward incoming data on a port without worrying about what it carries.

SSL/TLS connections do not always require client authentication, but SSH session requires the

client to be authenticated via a password, key, or GSSAPI methods. Similarly, some of the

hardening procedures for SSL/TLS and SSH can appear similar. Choice of ciphers enabled in

SSH also matter in the same way it matters in SSL/TLS. Disabling of obsolete and insecure

protocols like SSHv1 (like SSLv2 in SSL/TLS) also holds true for SSH.

Understanding Cipher-suites

A typical SSL session consists of a number of procedures to ensure confidentiality, integrity,

and authentication in communication. Any book on basic public key cryptography explains these

processes in detail. These processes require different kinds of algorithms and ciphers. A cipher-

suite is a collection of ciphers that are collectively used in an SSL session. Each cipher in a

cipher-suite serves a different purpose. The purpose includes the method used for key

exchange and authentication, encryption algorithm, and MAC calculation (hashing) algorithm.

Let us break a typical cipher suite into its parts as defined in RFC 5246. A full-fledged cipher-

suite name contains the following format:

TLS_KX_WITH_CIPHER_MAC

The first part is the protocol which is SSL or TLS. The second part - KX is - meant for key

exchange which belongs to cipher algorithms that provide the key exchange feature, and

authentication (if supported) like RSA, Diffie-Hellman (DH), etc. The cipher indicates the

symmetric key algorithm like AES along with its mode of operation like CBC and finally followed

by the hashing algorithm like MD5 and SHA. An example is:

2015 EMC Proven Professional Knowledge Sharing 27

 TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Where - the fields indicate DHE for Diffie-Hellman key-exchange, RSA for authentication, AES

with a 128 bit key in CBC mode for symmetric encryption and SHA (SHA-1) for message hash.

For a detailed understanding and associated reading, refer to RFC 5246.

Cipher categories

Some popularly known cipher types are discussed here. Some of these ciphers crop up in

security scanners and security hardening guides as to why they should be disabled or enabled.

It is important that one have a fair idea about the existence of these ciphers and terminology

used by vendors, because these are often a cause of confusion. Examples include null, export

grade, low, medium and high grade, and anonymous ciphers.

Null ciphers are considered weak because they do not provide any real encryption. It does not

mean that they are not important. These can only be used for testing and troubleshooting

purposes or when confidentiality of the message is not needed.

Examples12:

 SSL_RSA_WITH_NULL_MD5 NULL-MD5

 SSL_RSA_WITH_NULL_SHA NULL-SHA

Here RSA is used for key exchange, MD5 and SHA are used for Mac and Null cipher is used for

‘encryption’. The user can refer to the RFCs as suggested reading for a better understanding:

RFC241013 and RFC478514.

Export ciphers - Export ciphers are intentionally weak for historic reasons and are not used in

common deployments. Their encryption can be easily broken with basic hardware. (RFC2246)

The security scanners check if export ciphers are enabled on your SSL deployment by mistake

or otherwise. The typical key size is around 40-56 bits. By modern standards, any key size less

than 128 bits is considered weak.

2015 EMC Proven Professional Knowledge Sharing 28

Anonymous cipher-suites – The anonymous cipher-suites do not provide a way of signature-

based authentication in the SSL session and do not use a certificate. Hence, these are

vulnerable to a man-in-the-middle attack. The implementation is expected to provide

authentication by other means, for example a pre-shared secret key or password. For a better

understanding see RFC449215.

Low, Medium, and High grade ciphers – Typically, this classification refers specifically to the

symmetric encryption key size being used in an algorithm. Due to advancements in CPU and

computing power, modern day cryptography considers any key less than 128 bit as weak. The

Openssl’s page16, defines low-grade ciphers with 64 and 56 bit encryption algorithms. Medium

refers to 128 bit and High implies encryption algorithms with key sizes greater than 128.

AEAD cipher-suites – The AEAD (Authenticated Encryption and Associated Data) is an

advanced and relatively modern approach of block cipher mode of operation that is gaining

popularity because of the weaknesses discovered in recent years in existing modes (e.g. CBC).

Two of these modes are GCM (Galois Counter Mode) and CCM (Counter with CBC-MAC). RFC

5116, RFC5246, RFC5288, RFC5289, RFC5430 discuss these suites.

Forward secrecy – Forward secrecy and Perfect forward secrecy are properties of encrypted

communications where the keys used for encrypting the session are random and do not rely on

a single secret. This ensures that in the event of the single secret getting compromised, the

other parts of encrypted communication cannot be compromised. This property is associated

with Diffie-Hellman key change cipher-suites.

RC4 issues – The RC4 stream cipher used to be a popular choice because it was known to be

immune to CBC mode attacks discovered in recent years. However, recently new attacks have

been discovered against RC4 which are discussed later in the article (RC4 Biases).

Testing SSL/TLS for Security

Testing the SSL/TLS service for its strength and communication is an important part of verifying

and qualifying your SSL/TLS communication.

There are a lot of tools available for SSL scanning and testing. Some tools are open-source,

some are commercial, while some are available online. The reader is free to choose or evaluate

the tools and scanners based on other requirements such as reporting, support, etc. This article

serves an educational purpose and does not evaluate, recommend, or make a preference for

2015 EMC Proven Professional Knowledge Sharing 29

any specific tool. For the purpose of this article we take the examples of open source tools that

are recommended by OWASP17.

Referring to the OWASP page for SSL gives examples of a lot of tools that can be used for

testing SSL services. So where is the problem? Different tools test for different problems. A lot

of tools do not get updated and are not maintained so they may not refer to the most recent

problems associated with SSL/TLS. Some vulnerabilities are often disputed and are termed as

features by vendors. An example of this is the client-side renegotiation feature where the

community is divided. While evaluating those tools you will realize that a number of tools test

the most common things, whereas a few test for special kind of attacks and recent

vulnerabilities. Another element is the discovery of new vulnerabilities with time, so when you

see a new tool which supports ‘CCS scanning’ you might be puzzled as to what CCS scanning

refers to. To answer that, a recent vulnerability related to ChangeCipherSpec Injection (CVE-

2014-022418) in OpenSSL resulted in CCS scanning in some of the tools. It is obvious that for

an effective SSL testing strategy one should be well versed in the common terminologies used

in SSL/TLS, recent vulnerabilities, and the right/effective tools to be used in a particular situation

or deployment.

The testing part can be divided primarily into the following sections:

 Setting the expectation right: whitelisting/backlisting of acceptable items, choice of

standards and appropriate choice of SSL provider/library that supports your

requirements: A theoretical study.

 Configuration inspection, correctly setting the configuration.

 Protections of secrets, key file permissions, etc.

 Testing for certificate issues Name mismatch, signing algorithm, public key strength,

public key algorithm, key exchange mechanism, etc.

 Testing for protocols (SSLv2, SSLv3, TLS1, TLS1.1, TLS1.2)

 Protocol level issues (renegotiation, compression at SSL and at application level, such

as HTTP)

 Supported Cipher-suites, ciphers, key sizes, etc.

 Specific vulnerabilities (Heartbleed, CRIME, Lucky13, etc.)

2015 EMC Proven Professional Knowledge Sharing 30

SSL issues and problems reported cannot be categorized as black and white. For some things,

you may have to make a judgment call or decide upon an action plan for the future of your

product. Suppose a security scanner identifies ciphers running in CBC mode and hence

declares your setup vulnerable to the BEAST attack. Depending on the scanner, the suggested

solution would be to use RC4. At the same time, another scanner reports vulnerabilities

because RC4 is not considered secure. Probably every cipher-suite has some weakness or

another. What does this mean? Is the whole SSL world going to crumble now? The conflicting

reports often raise suspicion whether the problem is real or just exaggerated paranoia. We

understand the possibility of an attack, but is it for real? Is it practical to conduct an attack

without compromising additional infrastructure?

The truth is that there are external dependency factors that sometimes you must count in before

the vulnerability can be exploited. An excellent published study/survey19 on attacks from 2013

here elaborates on various SSL attacks, the dependencies, and practical feasibility of attacks.

However, it must be remembered that with passing time and technology, advancements change

and what is considered as theoretical can turn into real in the future.

Now, returning to testing of SSL service, let’s take an example of scanning an nginx web server

in its default SSL configuration:

2015 EMC Proven Professional Knowledge Sharing 31

We use the TestSSLServer17 tool which is a Java-based tool listed in the OWASP page for

SSL/TLS testing:

root@kali:~# java -jar TestSSLServer.jar 192.168.32.146 443

Supported versions: SSLv3 TLSv1.0 TLSv1.1 TLSv1.2

Deflate compression: no

Supported cipher suites (ORDER IS NOT SIGNIFICANT):

 SSLv3

 RSA_WITH_3DES_EDE_CBC_SHA

 DHE_RSA_WITH_3DES_EDE_CBC_SHA

 RSA_WITH_AES_128_CBC_SHA

 DHE_RSA_WITH_AES_128_CBC_SHA

 RSA_WITH_AES_256_CBC_SHA

 DHE_RSA_WITH_AES_256_CBC_SHA

 RSA_WITH_CAMELLIA_128_CBC_SHA

 DHE_RSA_WITH_CAMELLIA_128_CBC_SHA

 RSA_WITH_CAMELLIA_256_CBC_SHA

 DHE_RSA_WITH_CAMELLIA_256_CBC_SHA

 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

 (TLSv1.0: idem)

 (TLSv1.1: idem)

 TLSv1.2

 RSA_WITH_3DES_EDE_CBC_SHA

 DHE_RSA_WITH_3DES_EDE_CBC_SHA

 RSA_WITH_AES_128_CBC_SHA

 DHE_RSA_WITH_AES_128_CBC_SHA

 RSA_WITH_AES_256_CBC_SHA

 DHE_RSA_WITH_AES_256_CBC_SHA

 RSA_WITH_AES_128_CBC_SHA256

 RSA_WITH_AES_256_CBC_SHA256

 RSA_WITH_CAMELLIA_128_CBC_SHA

 DHE_RSA_WITH_CAMELLIA_128_CBC_SHA

 DHE_RSA_WITH_AES_128_CBC_SHA256

 DHE_RSA_WITH_AES_256_CBC_SHA256

 RSA_WITH_CAMELLIA_256_CBC_SHA

 DHE_RSA_WITH_CAMELLIA_256_CBC_SHA

 TLS_RSA_WITH_AES_128_GCM_SHA256

 TLS_RSA_WITH_AES_256_GCM_SHA384

 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Server certificate(s):

 2cb353398af1d75284213db6b0a825839de53c0c: CN=nginx-dev, OU=Nginx dev, O=Test Nginx,

L=Brisbane, ST=Queensland, C=AU

Minimal encryption strength: strong encryption (96-bit or more)

Achievable encryption strength: strong encryption (96-bit or more)

BEAST status: vulnerable

CRIME status: protected

2015 EMC Proven Professional Knowledge Sharing 32

The output of the tool lists the protocol versions that the web server supports. It also lists what

cipher-suites are supported at different protocol level like SSLv3, TLS 1.0, etc. It also tells you

whether the SSL/TLS is protected or vulnerable to attacks like BEAST and CRIME. As it turns

out, this web server’s SSL/TLS can be vulnerable to BEAST attack. BEAST is more of an attack

towards the clients. We may have to investigate what conditions make TestSSLServer tool

report a website vulnerable to BEAST. The home page20 for TestSSLServer notes the situations

for its BEAST attack; in this case it is the presence of CBC mode ciphers. As mentioned in the

Popular and Common Attacks section, CBC mode ciphers are vulnerable to BEAST attack.

Example 2: Scanning the server with nmap’s ssl enumeration scripts17:

Nmap is a famous network port scanner and it results in a similar output with the protocols

supported along with the ciphers.

Example 3: Another good option is to use sslyze17 which in addition to listing protocols and

supported cipher-suits, helps in finding out if client initiated renegotiations are supported or not.

Example 4: You may even use the Openssl client17 to directly connect to the SSL server.

As long as a service supports the standard handshake procedure, these tools can be used to

scan these services and check for any loopholes. There are services like SMTP which can have

the provision of using STARTLLS for initiating the secure communication. For scanning such

service, you may need a scanner that has STARTTLS support built in, e.g. sslyze supports

starttls option for SMTP and xmpp services.

When scanning for services other than HTTPS, you may have to research the tools to find what

options are supported.

2015 EMC Proven Professional Knowledge Sharing 33

root@kali:~# sslyze --starttls=smtp --tlsv1 test.smtp.com:587

 REGISTERING AVAILABLE PLUGINS

 PluginCompression

 PluginOpenSSLCipherSuites

 PluginSessionRenegotiation

 PluginSessionResumption

 PluginCertInfo

 CHECKING HOST(S) AVAILABILITY

 test.smtp.com:587 => 192.168.32.146:587

 SCAN RESULTS FOR TEST.SMTP.COM:587 – 192.168.32.146:587

 --

 * TLSV1 Cipher Suites :

 Preferred Cipher Suite:

 ECDHE-RSA-RC4-SHA 128 bits 250 2.0.0 OK ur2sm9690289pbc.51 - gsmtp

 Accepted Cipher Suite(s):

 RC4-MD5 128 bits 250 2.0.0 OK z2sm9732910pdc.95 - gsmtp

 RC4-SHA 128 bits 250 2.0.0 OK x16sm9677018pbt.70 - gsmtp

 AES256-SHA 256 bits 250 2.0.0 OK vl1sm9682220pbc.62 - gsmtp

 AES128-SHA 128 bits 250 2.0.0 OK rv6sm9864658pab.9 - gsmtp

 ECDHE-RSA-AES256-SHA 256 bits 250 2.0.0 OK l13sm9694193pbq.40 - gsmtp

 DES-CBC3-SHA 168 bits 250 2.0.0 OK jt8sm9713909pbc.6 - gsmtp

 ECDHE-RSA-AES128-SHA 128 bits 250 2.0.0 OK j8sm2476648pdo.79 - gsmtp

 ECDHE-RSA-RC4-SHA 128 bits 250 2.0.0 OK bn13sm9784876pdb.4 - gsmtp

 Rejected Cipher Suite(s):

 PSK-RC4-SHA TLS Alert - No ciphers available

 PSK-AES256-CBC-SHA TLS Alert - No ciphers available

 PSK-AES128-CBC-SHA TLS Alert - No ciphers available

…..

2015 EMC Proven Professional Knowledge Sharing 34

Sslscan17 is another tool which can help you in scanning starttls services:

root@kali:~# sslscan --starttls --tlsv1 test.smtp.com:587

 _

 ___ ___| |___ ___ __ _ _ __

 / __/ __| / __|/ __/ _` | '_ \

 __ __ \ __ \ (_| (_| | | | |

 |___/___/_|___/_____,_|_| |_|

 Version 1.8.2

 http://www.titania.co.uk

 Copyright Ian Ventura-Whiting 2009

Testing SSL server test.smtp.com on port 587

 Supported Server Cipher(s):

 Failed TLSv1 256 bits ECDHE-RSA-AES256-GCM-SHA384

 Failed TLSv1 256 bits ECDHE-ECDSA-AES256-GCM-SHA384

 Failed TLSv1 256 bits ECDHE-RSA-AES256-SHA384

 Failed TLSv1 256 bits ECDHE-ECDSA-AES256-SHA384

 Accepted TLSv1 256 bits ECDHE-RSA-AES256-SHA

 Rejected TLSv1 256 bits ECDHE-ECDSA-AES256-SHA

 Rejected TLSv1 256 bits SRP-DSS-AES-256-CBC-SHA

 Rejected TLSv1 256 bits SRP-RSA-AES-256-CBC-SHA

 Failed TLSv1 256 bits DHE-DSS-AES256-GCM-SHA384

 Failed TLSv1 256 bits DHE-RSA-AES256-GCM-SHA384

 Failed TLSv1 256 bits DHE-RSA-AES256-SHA256

 Failed TLSv1 256 bits DHE-DSS-AES256-SHA256

 Rejected TLSv1 256 bits DHE-RSA-AES256-SHA

 Rejected TLSv1 256 bits DHE-DSS-AES256-SHA

 Rejected TLSv1 256 bits DHE-RSA-CAMELLIA256-SHA

 Rejected TLSv1 256 bits DHE-DSS-CAMELLIA256-SHA

 Rejected TLSv1 256 bits AECDH-AES256-SHA

 Rejected TLSv1 256 bits SRP-AES-256-CBC-SHA

 Failed TLSv1 256 bits ADH-AES256-GCM-SHA384

 Failed TLSv1 256 bits ADH-AES256-SHA256

 Rejected TLSv1 256 bits ADH-AES256-SHA

 Rejected TLSv1 256 bits ADH-CAMELLIA256-SHA

….

Testing databases

Unlike web servers, testing the database for SSL may not be straightforward all the time. Unlike

web servers, databases may not follow the standard handshake procedure; hence, the

handshake using a traditional SSL/TLS client like OpenSSL’s s_client may fail. The only way to

negotiate a successful handshake with a database is to use the database’s supported client or

its API (the JDBC connector in its SSL mode). Enabling SSL/TLS for database communications

is not a major requirement for a majority of users because most times the database is installed

on the same server and the database communication is not over the network. However, in

deployments where high security is desired, it is best to enable database communication over

SSL/TLS and to test it appropriately. The challenges in enabling SSL/TLS for a database are:

1. Documentation not as extensive as for SSL/TLS in the web/HTTP layer

2015 EMC Proven Professional Knowledge Sharing 35

2. Difficulty in testing as standard handshake may not be supported

3. Different databases implementing SSL/TLS differently, hence procedures to check may

vary

4. Configuration issues, lack of clarity

The last part about the configuration issues is the most important and often neglected by users.

A user may try to configure a certain set of parameters to enable SSL. However, in the absence

of proper testing and validation, you cannot be sure if the database was ever configured for

using SSL correctly. Also, you may not have standard tools or scanners to check if the content

is encrypted.

A simple use-case: as a user you may opt to enable SSL/TLS for a network channel to secure

database replication. The configuration may well be as documented by the database vendor,

but for testing you really want to see it on the wire. Let’s see how one can debug the SSL/TLS

traffic when it’s not known if the SSL/TLS is enabled with the server or not. Here is an example

capture of a mysql client connecting to an SSL enabled server:

Figure 15: Mysql encrypted traffic - Before changing the decoding to SSL

The default capture without any filters would just display parts of traffic identified by Wireshark

as MySQL traffic. The packets belonging to the MySQL protocol are marked in black for

reference. You can even see the MySQL welcome string in the capture.

2015 EMC Proven Professional Knowledge Sharing 36

However, unlike a normal HTTPS communication, the SSL handshake does not occur after the

3-way TCP handshake. This is why typical SSL clients like openssl would fail while performing

an SSL handshake with a MySQL database.

In order to see the TLS packets you can right click on any packet and select “Decode As” and

then select SSL as the protocol. The next figure is what you see because now Wireshark has

decoded all the packets as TLS packets and you can observe that our MySQL is using TLS

version 1. Inspecting the packets would reveal all the information that MySQL’s TLS is using.

The highlighted packets in yellow are the TLS handshake packets, while those in black were the

original MySQL welcome string packets that don’t actually belong to TLS. Hence, Wireshark

gives a message of “Ignored Unknown Record”.

Figure 16: MySQL encrypted traffic - After changing the decoding to SSL

2015 EMC Proven Professional Knowledge Sharing 37

Looking at the Server Hello packet, you can see the cipher-suite selected by MySQL for

communication in this session:

Figure 17: Captured Cipher-suite in use for database traffic encryption

The above use case explains a scenario where the database SSL does not follow a standard

SSL handshake and thus fails to be scanned by typical SSL scanners. The same concept of

inspecting the handshake on wire can be extended for any other service that does not follow the

standard handshake procedure.

SSL providers and Libraries

Talking about the SSL/TLS protocol and reading the RFCs for how it has been designed is one

part of the learning. The RFCs are just a blueprint of how the SSL/TLS is supposed to work

versus how SSL/TLS ‘actually’ works. The real strength lies in the implementation.

There are a number of cryptographic libraries that provide SSL/TLS implementation. The ‘actual’

working of protocols is dependent on how and to what extent they have been implemented in

the software. Success of a new SSL/TLS blueprint depends on its adoption by the software

vendors which is often slow due to the complexities involved. This blueprint can range from the

introduction of a new protocol version, let’s say like a new TLS 1.x specification, introduction of

new cipher-suites or modes of block encryption (like the AEAD), introduction of new fields or

2015 EMC Proven Professional Knowledge Sharing 38

specs, etc. Needless to say that the continuous evolving nature of web applications and the

World Wide Web presents new challenges and risks to the SSL/TLS communication. The

usefulness of a library lies in its continuous development and bug fixing, helpful documentation

for the developers, ease of deployment and troubleshooting, and support for the most recent

available protocols and cipher-suites. When we talk about ‘usefulness’, it strictly means your

organization’s requirements like security standards for operations involving cryptography,

compliance levels, etc. An example is the NIST-approved cryptographic practices and the NSA

Suit B cryptography defined in RFC646021, the FIPS 140 standard for the requirements of

cryptographic modules, PCI compliance requirements, etc.

Knowledge of these libraries, what they are capable of, and where they are being used is

essential in understanding the SSL/TLS implementation scene. A recent use case was the

discovery of the Heartbleed bug that affected OpenSSL’s implementation. Media reports22

roughly quoted as 2/3 of the Internet affected by it. However, a number of users were clueless

on where exactly OpenSSL is being used by the system and how to check if it is vulnerable.

The knowledge of where these libraries are being used also helps in the risk analysis of an

SSL/TLS-related vulnerability. For instance, CVE-2014-022418 which is related to Man-In-The-

Middle attack in OpenSSL, requires both client and server to be running a vulnerable version of

OpenSSL. Does that mean that my browser is vulnerable to a Man-In-The-Middle attack when I

am connecting to a website that uses OpenSSL on the server side? Probably, the answer is no.

Because while the client is required to use OpenSSL, none of the popular browsers like Mozilla,

Internet Explorer, and Google Chrome use OpenSSL; Mozilla and Chrome use NSS while IE

uses SChannel respectively.

Talking about various libraries, different libraries have different licensing terms. While some are

open source and free for general use, others are proprietary software. Among the most popular

is the free and open sourced OpenSSL. Almost all popular Linux distributions come with a

default installation of OpenSSL and it is easy to compile any server software in Linux, for

example Apache web server or MySQL database with SSL support from OpenSSL. The open

source and free nature has ensured that there is lot of help available on the Internet if you are

stuck with an OpenSSL-related problem. Various projects like the LibreSSL have been forked

out of OpenSSL’s codebase. Then there are RSA’s BSafe, Bouncy Castle, and JSSE (Java

Secure Socket Extension) by Oracle. The JSSE implementation comes with JDK/JRE and Java-

based programs typically use JSSE for their SSL implementation. An example is Oracle’s

2015 EMC Proven Professional Knowledge Sharing 39

Weblogic Application server23 which uses JSSE for its SSL implementation. The SSL

configuration can be changed to use other providers as well. Apache Tomcat web application

server24 uses Java based JSSE and can alternatively use the native APR (Apache Portable

Runtime) library which internally uses OpenSSL libraries. Microsoft’s SChannel library is used

by Microsoft products including its Internet Explorer browser. NSS (Network security services) is

a library that is used by browsers like Mozilla and Google Chrome.

Checklist: Popular and common attacks in recent years

The following topic gives a brief introduction on the popular SSL/TLS vulnerabilities in recent

years and complex technical details have been kept to a minimum. The readers are advised to

follow references for a detailed understanding of the vulnerability in question. The discovery

date highlights the approximate time of public disclosure by the researchers.

 Vulnerability: Renegotiation vulnerabilities

 Discovery TimeLine: 2009-2011

 Checklist :

 Disable client initiated renegotiation

CVE-2011-5094, CVE-2011-1473, CVE-2009-3555: Client-initiated renegotiation in an SSL

communication can lead to the consumption of relatively more CPU cycles on the server side

which can result in a Denial of Service situation on the server side. Though this vulnerability is

disputed, where experts are divided on practicality of this attack, servers that allow renegotiation

initiated by the client are considered vulnerable. Disabling client-initiated renegotiation is

something that has to be supported and can be done from the server side SSL library.

 Vulnerability: BEAST vulnerability

 Discovery Timeline: 2011

 Checklist:

 Use TLS 1.1 or TLS 1.2

 If not TLS 1.1 or TLS 1.2, disable CBC mode ciphers

 Use RC4

2015 EMC Proven Professional Knowledge Sharing 40

The BEAST (Browser Exploit Against SSL/TLS) vulnerability (CVE-2011-3389) discovered in

September 2011 is a vulnerability that affects SSL/TLS (versions 1.0 and earlier) and primarily

works on the client side (through the web browsers). The vulnerability affects CBC mode

ciphers. The server side mitigations include the preference of RC4-based cipher suites, while on

the client (browser) side, it is recommended to use TLS 1.1 and TLS 1.2. The vulnerability is

mostly reported by security scanners when CBC mode ciphers are in use. The popular

mitigation is to disable CBC mode ciphers on the server side SSL configuration and use RC4.

Note that use of RC4 was discouraged later, because of the discovery of RC4 Biases.

 Vulnerability: CRIME vulnerability

 Discovery Timeline: 2012

 Checklist :

 Disable the use of HTTP compression

 Disable the use of compression in SSL/TLS

The CRIME (Compression Ratio Info-leak Made Easy) attack (CVE-2012-4949) discovered in

September 2012 works against compression techniques in use by web servers in an HTTPS

connection. This vulnerability is reported by security scanners when compression is enabled in

an SSL connection. The common solution is to keep compression in SSL/TLS disabled. The

vulnerability is reported by the scanners when compression in SSL/TLS or even in HTTP is

enabled.

 Vulnerability: Lucky13 Attack

 Discovery Timeline: 2013

 Checklist :

 Disable the use of CBC mode ciphers

Lucky 13 attack (CVE-2013-0169), discovered in February 2013, is a timing attack that aims to

recover plain text when CBC mode ciphers are in use. Security scanners mostly report the

vulnerability when CBC mode ciphers are in use.

 Vulnerability: RC4 Biases

 Discovery Timeline: 2013

 Checklist :

 Disable the use of RC4 ciphers

2015 EMC Proven Professional Knowledge Sharing 41

The RC4 algorithm has been a popular choice when attacks against CBC mode ciphers were on

the rise. However, recent studies released in July 2013 indicated that RC4 has its own share of

weaknesses (CVE-2013-2566). The mitigation is to move away from RC4. Security scanners

report RC4 issues if RC4 is found as an enabled cipher in SSL/TLS.

 Vulnerability: TIME vulnerability

 Discovery Timeline: 2013

 Checklist:

 Disable the use of HTTP compression

 Disable the use of SSL/TLS compression

The TIME (Timing Info-leak Made Easy) vulnerability, discovered in April 2013, targets

compression and mainly addresses the limitations of CRIME attack. The vulnerability is reported

by the scanners when compression is enabled.

 Vulnerability: BREACH vulnerability

 Discovery Timeline: 2013

 Checklist:

 Disable the use of HTTP compression

 Disable the use of SSL/TLS compression

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (CVE-2013-

3587), discovered in September 2013, is considered a successor to the CRIME vulnerability and

targets the compression in the HTTP protocol itself in contrast to CRIME which targets the

compression in SSL/TLS protocol. The vulnerability is reported by the scanners when

compression is enabled.

 Vulnerability: HeartBleed vulnerability

 Discovery Timeline: 2014

 Checklist:

 Upgrade your OpenSSL library

The Heartbleed vulnerability (CVE-2014-0160), discovered in April 2014, was among the most

serious bugs affecting SSL/TLS in recent times. The bug affected the OpenSSL package which

is a famous and widely used implementation of SSL/TLS. The bug affected OpenSSL’s

extension named Heartbeat, hence the name HeartBleed.

2015 EMC Proven Professional Knowledge Sharing 42

 Vulnerability: POODLE vulnerability

 Discovery Timeline: 2014

 Checklist:

 Disable the use of CBC mode ciphers

 Disable the use of SSLv3 in general (as only remaining cipher RC4 is considered

insecure as well)

The POODLE (Padding Oracle On Downgraded Legacy Encryption) vulnerability (CVE-2014-

3566), disclosed in September 2014, affects SSL v3 and results in plain text discovery when

CBC mode ciphers are used. A new variant of POODLE (CVE-2014-8730) has been announced

in December 2014 that affects SSL implementations of certain vendors. Since the new variant is

not a vulnerability in the protocol itself, a patch update from the vendor will fix the POODLE

variant vulnerability.

Recommendations for selecting, configuring, and installing TLS
server and clients

Testing SSL/TLS is a non-trivial and extensive task because of the large number of

implementations, cipher suites, and exponential development in the field of crypto analysis. It is

a research-oriented field and understanding its features in itself can take a long time. Now

combine this time with the business requirement of, for example, online ecommerce and you

have two conflicting areas to focus on. Different businesses have different security

requirements. Systems in high security zones like governance, defense, and military may have

to maintain the highest standards of security. A credit card payment processing business may

have to worry about PCI compliance factors and everyday threats from the unruly Internet. A

simple social networking platform with no sensitive financial data may only have to worry about

usernames and passwords. Clearly, the risk is not the same everywhere.

A simple login-based application may use SSL/TLS just for the sake of it. They may not worry

about the differences between TLS 1.2 and TLS 1.1, but the defense systems will certainly have

to.

It is always wise to refer to a recommendation or standard when you are analyzing the security

of your SSL/TLS system. The problem is at times these standards may become overwhelming

and difficult to understand for common users.

Here are some recommendations suggested for SSL/TLS usage and testing:

2015 EMC Proven Professional Knowledge Sharing 43

NIST Guidelines for TLS implementations

NIST has defined a set of tests recognized as the minimum criteria for SSL/TLS testing. For

those who want to achieve NIST-approved standards of SSL/TLS, this is the guide to look for.

The guide is extensive in detail and covers recommendations for clients, servers, certificates,

keys, and cipher related aspects of SSL.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf

OWASP Transport Layer Protection CheatSheet and Testing Guide

For those who do not want to go into details covered by NIST standards, a simpler option is the

OWASP Transport Layer Protection cheatsheet which provides guidelines and a model to follow

for protecting an application using TLS. It is written in a simple to understand language and can

be an easy reference for anyone trying to build a secure application.

https://owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP has another guide for testing SSL/TLS services. This guide provides an easy way to

scan your services with open source tools and can be a good source of guidance to create a

test strategy for your SSL/TLS testing efforts.

https://owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://owasp.org/index.php/Testing_for_SSL-TLS_(OWASP-CM-001)

2015 EMC Proven Professional Knowledge Sharing 44

Summary and Conclusion

The purpose of this article is not to repeat the same old cryptography basics and explain the

Alice and Bob communication problem, but rather to delve into SSL in a practical way to solve

the day-to-day problems and dilemmas engineers face. Its main idea is to equip the reader with

knowledge and tools required to understand and troubleshoot on his/her own the typical

SSL/TLS-related problems and impart the know-how to understand and evaluate risk for

complex security issues that periodically crop up with scary names like HeartBleed, POODLE,

TIME, and CRIME.

We started by exploring the basic history of SSL/TLS, its development, and major changes in

successive protocol versions along with references to official RFCs one can always reference

for a detailed study. Though SSL and TLS are often used interchangeably, TLS is the successor

of SSL v3. The history timeline is followed by a 2010 SSLLabs report where we get an

approximate idea on the adoption of various protocol versions of SSL/TLS. This presents us

with an important insight that even though SSL/TLS has existed for nearly two decades, the

adoption toward better and secure versions is still catching up.

We then discuss the three pillars of secure communication: Confidentiality provided by the

encryption algorithm, Integrity by hashing algorithm, and Authentication by certificates after

taking an example cipher-suite. We also explore the anatomy at packet level of an SSL/TLS

network session. We briefly define what constitutes a SSL/TLS network packet and go through

its fields, sub protocols used, and their relevance using Wireshark, followed by a structural

explanation of the SSL/TLS sub protocols. In contrast to SSL/TLS, we briefly touch upon some

of the other similar protocols like the IPSec, DTLS, WPA/WEP, SSH, etc., which often are a

source of confusion to beginners. We discuss the conceptual differences between SSH and

SSL. We go through the cipher-suite string of an SSL/TLS communication and explore various

categories of ciphers that are important from a security perspective. Null, export, anonymous,

low/high/medium grades, AEAD ciphers, and forward secrecy are terms you must know before

you read an SSL security report. We also explore ways to scan a typical SSL service for the

kind of ciphers and the SSL/TLS protocol version it supports using the OWASP recommended

tools. Some scanners scan for specific vulnerabilities like renegotiation, CRIME, BEAST, etc.

We also look for services like SMTP that use STARTTLS to initiate SSL while running their

SMTP service on a standard port. Some services like the SSL on a database (MySQL) do not

follow the typical SSL/TLS handshake procedures and an attempt to run a standard SSL client

2015 EMC Proven Professional Knowledge Sharing 45

may fail during handshake; we elaborate on how to check at the packet level for such services.

You may always go ahead and write your own scanner client with such info.

Talking about TLS versions is like going through the blueprints and is incomplete unless we

have the knowledge of its implementation. Different software use different cryptographic

libraries for their SSL/TLS use. To name a few, we talk briefly about various SSL libraries and

providers like OpenSSL, NSS, SChannel, LibreSSL, RSA BSafe, Bouncy Castle, JSSE, and

examples on where exactly they fit in and how they are used. We discuss use cases like CVE-

2014-0224 on how this knowledge helps in analyzing SSL/TLS-related vulnerabilities and

threats. The reader can choose to research more on these libraries and become familiar with

the other implementations and figure out any limitations on their own. This certainly helps in

choosing the appropriate library for one’s long-term business use.

The next part explains the recent attacks discovered on SSL/TLS that have gained popularity

over the past few years like Renegotiation problems, BEAST, CRIME, Lucky13, TIME, RC4

Biases, BEACH, HeartBleed, and POODLE. These are the vulnerabilities that you need to know

and are commonly reported by SSL scanners while scanning an SSL service. Their associated

CVE ID is mentioned for an easy reference. Often, different scanners suggest different

mitigations and it creates more confusion for an average user on what exactly needs to done.

Rather than repeating the complex technical details, this section attempts to provide clarity on

these issues along with their timeline of disclosure and a checklist of what mitigations they

actually call for along with a brief description. The reader becomes familiar with troubleshooting

SSL/TLS-based services, which can result in rapid decision making and planned adaptation with

the appropriate choice of SSL/TLS and understanding of prevalent attacks.

2015 EMC Proven Professional Knowledge Sharing 46

References

1. Netscape release of SSLv3 -

https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SS

L.html

2. RFC for SSLv3 - http://tools.ietf.org/html/rfc6101

3. RFC for TLS v1.0 - http://tools.ietf.org/html/rfc2246

4. RFC for TLS v1.1 - http://tools.ietf.org/html/rfc4346

5. RFC for TLS v1.2 - http://tools.ietf.org/html/rfc5246

6. Updates for all protocols with SSL v2 - http://tools.ietf.org/html/rfc6176

7. SSLLabs report - http://blog.ivanristic.com/Qualys_SSL_Labs-State_of_SSL_2010-

v1.6.pdf

8. X.509 v3 certificate - RFC5280 - https://www.ietf.org/rfc/rfc5280.txt

9. X.509 v3 certificate - RFC6818 - https://www.ietf.org/rfc/rfc6818.txt

10. Pre-shared key cipher-suites - RFC5487 - https://www.ietf.org/rfc/rfc5487.txt

11. DTLS Protocol - RFC6347 - https://www.ietf.org/rfc/rfc6347.txt

12. Openssl ciphers reference - https://www.openssl.org/docs/apps/ciphers.html

13. Null ciphers - RFC2410 - https://www.ietf.org/rfc/rfc2410.txt

14. Null ciphers - RFC4785 - https://www.ietf.org/rfc/rfc4785.txt

15. Anonymous ciphers - https://www.ietf.org/rfc/rfc4492.txt

16. Low, Med and High ciphers -

https://www.openssl.org/docs/apps/ciphers.html#command_options

17. OWASP SSL testing tools – https://owasp.org/index.php/Testing_for_SSL-

TLS_(OWASP-CM-001)

18. CVE-2014-0224 - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0224

19. Survey on attacks - https://www.isecpartners.com/media/106031/ssl_attacks_survey.pdf

20. TestSSLServer home - www.bolet.org/testsslserver/

21. NSA Suit B cryptography - https://www.ietf.org/rfc/rfc6460.txt

22. Media report on HeartBleed - http://arstechnica.com/security/2014/04/critical-crypto-bug-

in-openssl-opens-two-thirds-of-the-web-to-eavesdropping/

23. Weblogic Application server SSL configuration -

http://docs.oracle.com/cd/E23943_01/web.1111/e13707/ssl.htm#SECMG384

24. Apache Tomcat SSL configuration - http://tomcat.apache.org/tomcat-8.0-doc/ssl-

howto.html

https://web.archive.org/web/19970614020952/http:/home.netscape.com/newsref/std/SSL.html
https://web.archive.org/web/19970614020952/http:/home.netscape.com/newsref/std/SSL.html
http://tools.ietf.org/html/rfc6101
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6176
http://blog.ivanristic.com/Qualys_SSL_Labs-State_of_SSL_2010-v1.6.pdf
http://blog.ivanristic.com/Qualys_SSL_Labs-State_of_SSL_2010-v1.6.pdf
https://www.isecpartners.com/media/106031/ssl_attacks_survey.pdf
https://www.ietf.org/rfc/rfc6460.txt

2015 EMC Proven Professional Knowledge Sharing 47

General links for more information:

25. TIME attack BlackHat presentation - https://media.blackhat.com/eu-

13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf

26. BREACH attack - https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-

seconds-A-BREACH-beyond-CRIME-Slides.pdf

27. Lucky 13 attack - http://www.isg.rhul.ac.uk/tls/TLStiming.pdf

28. RC4 Biases attack - http://www.isg.rhul.ac.uk/tls/RC4biases.pdf

EMC believes the information in this publication is accurate as of its publication date. The

information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION

MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO

THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying, and distribution of any EMC software described in this publication requires an

applicable software license.

https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-Slides.pdf
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-Slides.pdf
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf
http://www.isg.rhul.ac.uk/tls/RC4biases.pdf

