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1 Introduction 
 

Internet of Things (IoT) is gaining traction as an up to date technology encouraging  
communication between devices. Data is transferred between devices over a sensor network, 
which is one of the main elements in the IoT environment. Those sensors are typically placed in 
open environments, vulnerable to various kinds of threats and attacks launched against the 
network of devices. Consequently, the network components behave in an unusual manner and 
manipulated data is exchanged between devices (de Souza et al., 2017). Therefore, attention 
should be given to detecting abnormal behavior in IoT systems. There are various approaches 
to deal with this issue. This article examines the more intelligent-based approach. 

 
The development of multi-agent systems is gaining more attention, facilitated by various agent 
platforms. One widely used agent paradigm is intelligent agents. The strength of this paradigm 
lies in the abilities of this type of agent, which include mainly reasoning as well as 
communication capabilities. Their communication ability enables them to be deployed to form 
a network of distributed systems, in which agents can coordinate with each other. This 
coordination is supported by their autonomous nature enabling them to observe the 
surrounding environment and actively react to any occurring changes (Wooldridge, 2009). In 
order to take a rational decision, after receiving a triggering event, intelligent agents utilize their 
reasoning power to identify the suitable goal and deliberate over how it will be achieved (Piunti 
et al., 2008). 

 
This article assesses the capabilities of distributed intelligent agents to detect anomalies in IoT. 
The main objective is to investigate the existing paradigms of distributed intelligent agents as 
well as the security threats taking place in the IoT domain, then examine whether it is feasible 
to utilize the distributed intelligent agents to detect abnormal behaviors in the IoT environment. 

  

https://scholar.google.de/citations?user=JD8v9fkAAAAJ&hl=en&oi=sra
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2 Anomaly detection 
 

2.1 General overview of security threats 
 
A secure computer system can be defined as a system that functions as intended. In the domain 
of computer systems’ security, the expectation of the actual behavior of the system to be equal 
to its intended one is called “trust”. It influences the confidence in how the system is supposed 
to function. The system’s expected behavior should act as guidelines for the goals that the 
system should meet. Moreover, a system is considered secure if it conforms to the following 
concepts: confidentiality, integrity and availability: confidentiality ensures access of data to 
authorized users only; integrity is realized when information is modified by legitimate entities 
and it prevents any malicious trials to edit the data; availability guarantees that the required 
resources are accessible to authorized users anytime (Kumar, 1995). 

 
Having defined the security of a computer system, focus turns to security threats and attacks 
which face the computing environments. Witzke (2016) pinpoints some of these threats. 
Password attacks, for example are becoming possible nowadays. Attackers utilize the power of 
hardware, software and processors to crack passwords and target encrypted password files. 
Once an attacker can download this file from the victim’s system, brute force attacks can be 
launched on the encrypted data until the correct password of the system is reached and is 
accessed. In addition, network-based attacks such as Transmission Control Protocol SYN flooding 
attacks, ping flood attacks, etc. also threaten the security of computer networks. However, they 
are out of this paper’s scope. 
 
Other security threats are viruses and worms. On the one hand a virus is malicious code that 
harms the system by altering software code. It accesses the system through contaminated files 
or e-mail attachments. Meanwhile, worms are malicious code that copies itself over the network 
without modifying files on the system or appending itself to any applications. Nonetheless, they 
are harmful once the software is executed. Hence, malicious code is viewed as one of the 
significant threats that should be considered in the security domain (Whitman, 2003). Attacks 
can also be launched against wireless networks by sending a flood of packets aiming to interfere 
in communication between networks and affecting the protocol processing capability of the 
target system. Another type of attack is software engineering attacks which evolve around the 
idea of fooling the target system to believe that the attacker is a legitimate user facing problems 
with accessing the system. As a result, and after many trials, the hacker can access the system 
(Witzke, 2016). 

 
Furthermore, Stallings and Brown (2012) classify security threats based on the CIA security 
concepts mentioned above. They group security attacks based on their consequences. There are 
four types of threat consequences and each threatens confidentiality, integrity or availability. As 
its name indicates, the unauthorized disclosure threatens the confidentiality of the system while 
deception is a risk against the integrity of the system and its data. Similarly, disruption is a threat 
to integrity as well as availability. Additionally, usurpation involves misuse and unauthorized 
control of resources, jeopardizing the integrity of the system. 

 

2.2 Overview of anomaly detection 
 

Many different security technologies are built upon the idea of recognizing threats and 
potentially malicious activities and preventing or stopping them from harming the system or the 
network. One of the most common approaches of recognition is signature matching, also called 
misuse detection. The signature-based detection method is widely used in anti-virus software 
and intrusion detection systems. It employs a database of recognized attacks by comparing 
activities to the stored attacks’ signatures. If the detector finds an activity like one of the known 



 

Dell.com/certification   7 

 

malicious attacks, it raises an alarm for suspicious behavior. The problem, however, lies in their 
inability of matching patterns to unknown signatures which were not detected before. 
Therefore, if an unknown abnormal behavior occurs, this attack will be completely ignored by 
the detector (Ashfaq et al., 2011). 

 
Anomaly detection technique has been developed to overcome the challenge imposed by 
signature-based detection approaches on the security of the systems and networks. Applied in 
several areas including computer network intrusion, gene expression analysis and financial fraud 
detection, anomaly detection is a promising mechanism to detect unusual behavior in the 
environment. It is a behavior-based method that looks for normal and abnormal usage patterns. 
In other words, the anomaly detection system builds patterns of normal activities and 
continuously observes its characteristics and actual behavior. Unlike the system-based 
technique, the system gives a warning once an activity which is different than its learnt normal 
pattern is performed and can detect new types of attacks that did not take place before (Ahmed 
and Mahmood, 2015). 

 
According to Sekar et al. (2002) the process of anomaly detection comprises two phases: training 
phase and detection phase. The training phase refers to a learning approach in which patterns 
are observed and a knowledge base of the normal behavior is created based on machine 
learning techniques. The detection phase represents the comparison process resulting in 
detecting malicious activities like those explained above. Anomaly detection aims to recognize 
anomalous and, especially, intrusive activities. The following part presents anomaly detection 
techniques from a network intrusion detection perspective. 

 
Anomaly detection techniques are classified into three categories as follows: 
 
1) Statistical-based method: 

It analyzes the behavior of the system over a period and stores the findings in a profile which 
is afterwards compared to the ongoing activity on the system. The comparison is based on 
an anomaly score indicating how much the actual event is different than the measures of 
the stored profile. The score is calculated using a function which considers the measures of 
the stored profile. Eventually, the anomaly score must be above a specific threshold for the 
system to consider the processed event as an intrusion (Patcha and Park, 2007). 

 
2) Machine learning techniques: 

They are based on the process of building a data model in order to categorize patterns in a 
given dataset. This model can enhance its performance by learning from old data patterns. 
Therefore, the model can apply any required changes when it is provided with new 
information. Machine learning techniques are classified into several schemes such as 
Bayesian Networks, Neural Networks, Fuzzy logic, Genetic Algorithms, Clustering and Outlier 
Detection, which are out of this paper’s scope. However, detailed information on their 
mechanisms and advantages can be found in Garcia-Teodoro et al. (2009); Omar et al. (2013) 
and Kaur et al. (2013). 

 
3) Knowledge-based anomaly detection technique: 

It gathers knowledge about the occurring attacks against a system or a network. This 
knowledge is then exploited to raise awareness of and alerts concerning coming attacks. 
Three more techniques fall under this approach; State Transition Analysis, Expert System 
and Signature Analysis. Further details are provided about the three techniques by Raut and 
Singh (2014) and Garcia-Teodoro et al. (2009). 

 
Lazarevic et al. (2003) add another anomaly detection technique that is based on data mining. 
Techniques for detecting anomalies support building models based on the normal data of the 
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system from a given training dataset. Subsequently, the model finds out if new testing data is 
considered normal or anomalous. This intrusion detection algorithm is based on supervised 
anomaly detection, where the model is trained to mark data as normal or abnormal behavior of 
the network. On the other hand, the unsupervised method does not require data to train from. 
Nonetheless, both methods result in many false alarms as any unusual action on the system is 
considered abnormal and a threat. Due to its various techniques for detecting threats and 
malicious activities, anomaly detection has a lot of interest recently in several domains that will 
be explored next. 

 

2.3 Applications of Anomaly Detection 
 
This section points at how anomaly detection is applied in each application. Furthermore, it 
reviews the nature of the data processed and some of the techniques for detecting anomalies 
related to each domain are highlighted. 
 

2.3.1 Intrusion Detection 
 

The anomaly detection mechanism is very effective when it comes to detecting intrusions. 
Therefore, an intrusion detection system can be one of the most promising applications for this 
detection approach. Intrusion detection views behavior of an intruder to differ from that of 
normal users to a quantifiable extent. Based on the discussion above, anomaly detection is 
applied in this domain and is considered one of its main aspects according to Lazarevic et al. 
(2003). 

 
It can be expected that the difference between the behaviors of both parties would overlap. 
Thus, care needs to be taken when interpreting what defines an intrusive behavior. Too loose 
of an interpretation of intrusive actions would catch more intruders but would also result in false 
positives where a legitimate user is mistakenly identified as an intruder. On the other hand, a 
tight interpretation of intrusive actions would result in false negatives, where intruders are 
passed off as legitimate users, so there is a certain level of compromise that needs to be 
considered (Kemmerer and Vigna, 2002; Liao et al., 2013; Stallings and Brown, 2012). 

 
In general, an intrusion detection system continuously examines the events occurring in its 
surrounding in order to verify if the source of this event is a legitimate action or an attack 
against the system or the network. In that light, an intrusion detection system is viewed by 
Debar et al. (1999) as a detector that decides whether the activities taking place in the 
environment of the system to be secured indicate any intrusive actions. The detector hence 
takes the following information from the system as Figure 1 shows: 
 

• long-term information of the intrusion detection techniques used by the system such 
as a database storing records of the previous attacks 

• information about the system’s configuration and its state 

• audit information including the actions that take place on the system 

 
Figure 1: An intrusion-detection system (Debar et al., 1999:806) 
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The literature examines two main categories of intrusion detection systems; network-based and 
host-based. They are classified according to their deployment scheme and utilize the anomaly 
detection techniques discussed in section 2.2. Network-based systems monitor a network 
segment to capture external attacks against the network. They work on sampling all the packets 
that pass through the network’s traffic in real-time. Host-based systems just monitor a single 
system while running on its operating system and ensuring its security policy is met. This kind of 
system looks at logs and activity occurring on the system, for instance the utilization of resources 
and interaction between programs and tries to find anomalies indicating internal or external 
suspicious activities (Bhuyan et al., 2014). 

 

2.3.2 Fraud Detection 
 

A further area of interest in which anomaly detection is widely used is fraud detection. It is 
defined as examining the activities of systems and users in commercial organizations such as 
credit card or insurance companies to capture anomalous behavior resulting from an illegitimate 
access or utilization of the organizational resources. Fraudulent actions are detected by 
capturing anomalies in data (Kou et al., 2004). Today, fraud detection leverages statistical 
analysis, data mining and machine learning practices. These techniques and how they are 
applied to detect fraud are out of the scope of this paper yet are explained thoroughly by Bolton 
and Hand (2002); Phua et al. (2010); Srivastava et al. (2008) and Bolton and Hand (2001). 

 
This anomaly detection approach is based on the concept of keeping records of the normal 
behavior of the user and checking for abnormalities in the actual behavior. Similarly, this 
technique is applied by applications of fraud detection including credit card fraud. In the process 
of detecting fraud in credit card companies, information about the user ID, time between 
transactions and money spent is recorded while the fraud is an unusual product purchased or 
high amount spent or a transaction occurring at an abnormal location. That is why techniques 
for detecting anomalies have two different forms; a by-owner approach based on comparing 
new transactions to usage history of the cardholder and by-operation, responsible for finding 
abnormal patterns related to the geographic location of the transaction (Chandola et al., 2009). 
 

2.3.3  Sensor Networks 
 

Recently,  sensor  networks  have  received  considerable  attention  in  the  computing 
environment.  A  sensor  network  is  a  deployment  of  several  devices  equipped  with 
sensors that perform a collaborative measurement process. The drawback of this kind of 
network lies in its limited resources, i.e. processor speed, memory, power and radio range. 
Another issue is the unattended nature of the sensor network that exposes it to multiple 
security attacks (Bhuse and Gupta, 2006). Also, regarding the network’s constraints,  Xie et al.  
(2011)  have  added  its  restricted  capability  of computation and communication. Both 
resource constraints as well as the unguarded deployment of the sensors make it susceptible 
to possible attacks and malicious activities (Rajasegarar et al., 2007). 

 
Identification of abnormalities that deviate from the normal pattern in sensed data in sensor 
networks draws the attention to the need for data analysis. This can be done by analyzing the 
data monitored and measured by the sensors or the traffic patterns passing through the network 
(Rajasegarar et al., 2006). The source of abnormal behavior here does not only consist of 
malicious attacks but can also be noise and errors occurring on the network. In all cases, 
detecting anomalies ensures the reliability and quality of the measured data and the protected 
operating of the network (Zhang et al., 2010). 

 
Chandola et al. (2009) divide anomaly detection in sensor networks to two types: sensor fault 
detection and intrusion detection. It is stated that anomalies in this domain indicate faults in the 



 

2020 Dell Technologies Proven Professional Knowledge Sharing                                                         10 

sensors or intrusive and unusual activities in the network that need to be analyzed further. The 
data coming from the network and processed by the anomaly detection techniques can be in 
many forms, for example binary, discrete or continuous. Regardless of the data type they usually 
include some missing values or noise patterns coming from the sensors’ environment. Hence, it 
becomes a challenging task for the anomaly detection mechanism to identify the actual 
anomalies and discard this type of unnecessary data. 

 
An added challenge for anomaly detection in the sensor environment is highlighted by 
Rajasegarar et al. (2008). Limitations and constraints in sensor networks pinpoint the necessity 
of conserving energy and power of resources. That it is why the adopted approaches to detect 
anomalies in the network should take this aspect into consideration in order to decrease the 
energy consumption of the sensors without affecting the lifetime of the network. An example is 
provided from the machinery sector to explain how anomalies are detected in sensor networks. 
First, the vibrations of the machines are measured in terms of temperature, pressure, frequency 
and amplitude. For example, once an unusual value or pattern appears indicating overheating, 
an alert is given to consider this case. 

 
Sensor networks are a key component in the IoT domain. In an IoT environment, devices  
transmit  huge  amount  of  data  from  their  sensors  to  enable machine-to-machine 
communication. Like sensor networks, an IoT network is vulnerable to data tampering and 
many other threats that will be discussed in the next section. 

 

2.4 Anomalies in IoT 
 

In this section an overview of IoT is given covering its definition, architecture, characteristics, 
architecture and some of its adopted technologies. It is followed by a discussion of several 
aspects of the security of IoT as a motivation to the need for anomaly detection to secure the 
IoT environment. How the anomaly detection approach is managed and implemented in IoT is 
also discussed. 

 

2.4.1 Overview of IoT 
 

IoT is simply a technology that offers person-to-computer and machine-to-machine 
communication. It permits devices to communicate by the use of sensors such as Wireless 
Sensor Network (WSN), nanotechnology and miniaturization in a way that will change our daily 
routines (Kelly et al., 2013). Moreover, IoT is reshaping our lives by providing opportunities to 
many best seller applications (Xia et al., 2012; Azzara et al., 2013). Further, IoT is considered the 
enabler that connected our world (Physical world) with the internet (Cyber Space). It offers 
interconnectivity and integration between the two mediums. IoT is also viewed as the trend of 
future networking and it’s believed that IoT will cause a third wave IT revolution (Ma, 2011). 
Furthermore, it is seen that a collaboration between cloud computing and IoT will help address 
several problems such as transportation issues like congestion and vehicle safety (He et al, 
2014). Finally, IoT can be defined as the impact of using technology on the various aspects of 
our daily lives along with the impact on the technology users’ behaviors. This effect will be 
greatly observable in domestic and working fields (Atzori et al., 2010). 

 
The IoT architecture is divided into four layers as shown in Figure 2. The perception layer is 
composed of the physical components such as data sensors like Radio Frequency Identification 
(RFIDs), barcodes and any sensor networks of such kind. The main purpose of this layer is to 
Identify objects uniquely and handling the data collected from the real world via sensors. The 
network layer is responsible for transferring the information collected from the perception layer 
to any information processing system using communication networks such as Internet or mobile 
networks. The middleware layer contains the information processing systems, where 
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automated actions are taken based on the outcome of the data processed. It acts as a 
middleware to link the system with the database to store the data gathered. The application 
layer manages the practical applications of IoT to fulfill the needs of the users in different 
industries, i.e. Smart Home, Smart Environment, Smart Transportation and Smart Hospitals 
(Farooq et al., 2015). 

 
 
 
 
 
 
 
 
 

Figure 2: Architecture of IoT (Farooq et al., 2015:1) 

 
Regarding the scope of the paper, prominent technologies used in the IoT environment are RFID 
and WSN. Both components are part of the perception layer. RFID is based on the idea of 
attaching tags or smart chips to objects to make them identifiable. The scanning process in the 
RFID system takes place as follows: the RFID reader sends radio signals to the tag. These signals 
are received by the antenna and are used to power on the chip. After the chip is powered on 
the tag it can interrogate with the reader to exchange data that is then sent and saved in a 
database system linked with the RFID reader. The RFID tags involved in this process can be active 
or passive. Active tags have an extra internal battery with a finite lifetime from which they get 
their power and transmit signals through their antenna. Passive tags do not include an internal 
power source. Rather, they get their power through the signals sent by the interacting RFID 
reader (Amendola et al., 2014; Gubbi et al., 2013; Kelm et al., 2013). 

 
The transmission of data in an IoT environment can take place over a sensor network, which is 
a different set of technology that needs to be taken into consideration. WSN, a low cost and 
easy-to-establish network without any maintenance overhead is utilized in sensing applications. 
It is defined as several nodes connected which consist of one or more sensors, a processing unit 
and a transceiver. The sensors enable the collection of data in the form of measured values from 
the surrounding environment, while the processor handles the intelligent computation of the 
gathered measurements. The transceiver enables wireless communication between all the 
nodes over the network which avoids the need to acquire a wired infrastructure. However, the 
sensor nodes of the WSN are characterized by limited processing capabilities, restricted energy 
resources and storage as well as short communication ranges and low bandwidth (O’Reilly et al., 
2014). 

 
In regard to the characteristics of IoT, Alghuried (2017) stated some distinctive features which 
take IoT to another level in the Internet world.  

 

• Ubiquitous sensing: IoT offers sensing capabilities that not only match human sensing 
abilities but surpass them. These capabilities are varied and intense enough to merge the 
gap between human and machine resulting in combining the cyber and physical world to 
solve human problems. There are two types of sensing objects; an environmental one which 
is responsible for grasping the surrounding environment and give alarms to humans if 
hazardous conditions take place; and an emotional sensing object whose main function is 
to grab the human emotions and give a reaction back to them. 

• Network of networks: IoT is a heterogeneous network where different types of networks 
such as GSM, CDMA, WCDMA and IP networks are covered by it. 
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• Intelligent processing: IoT enable humans to focus on qualitative thinking and taking 
ultimate decisions instead of spending too much time exploring the information. This would 
likely happen as, while IoT objects are designed to be as intelligent as humans, they are 
much quicker than humans in processing massive amounts of sensing data. 

 

2.4.2 Security of IoT 
 

Despite the additional aspects introduced by the IoT domain which are not included in general 
purpose or traditional computing paradigms, IoT devices face similar security problems typically  
encountered by general-purpose devices. However, IoT systems add additional capabilities 
which expose them to a new set of threat vectors. The nature of IoT, in terms of unprotected 
sensors and the need to connect several devices together to transmit a huge amount of data, 
makes this environment vulnerable to various types of attacks which will be discussed later. In 
fact, the ultimate security goal of IoT technology is to ensure the basic requirements for data 
confidentiality, integrity and availability mentioned in a previous section. They form the basis 
for the security policy of any information system and are also a model for establishing security 
mechanisms. Farooq et al. (2015) clarify how each concept is guaranteed in IoT security. 

 

2.4.2.1 Security goals of IoT 
 

Data confidentiality addresses how to keep the personal information of users secured against 
external disclosures or unauthorized access. It can be achieved through data encryption as 
ciphered text is only accessed by authorization credentials. Another technique is two-step 
verification which requires two dependent entities to be authenticated in order to provide 
access to the data. For instance, it ensures that the data of the sensor nodes in an IoT-based 
network is not disclosed to other nodes and the data collected by RFID tags is only provided to 
authorized readers. As for data integrity, it prevents tampering of data while they are exchanged 
between IoT devices so that it reaches the authorized users with its actual form and structure 
without unpermitted modifications. Integrity is provided by mechanisms for error detection in 
data such as checksum and cyclic redundancy check. On the other side, data availability uses the 
redundancy and failover backup methods to guarantee availability and reliability of data to users 
through duplicating the system components. It also requires firewalls to handle the 
consequences of a denial-of-service (DoS) attack to make data available to users even during 
catastrophic situations. So, its main goal is to provide users with access to their data anytime 
(Farooq et al., 2015). 

 

2.4.2.2  Security requirements of IoT 
 

There are several security requirements, depicted in Figure 3, to consider in order to achieve 
the previously discussed security goals of IoT. One of the requirements that ensure 
confidentiality, integrity and availability is user identification. It serves as an identity verification 
practice for avoiding unauthorized access to IoT devices. From a similar perspective, identity 
management manages the access of resources inside an IoT system by providing credentials and 
rights to permitted users when user intervention is necessary. For example, a remotely home 
monitored health system can be used to handle some health issues of patients avoiding the need 
of physical treatment. This is a non-traditional medicine approach called “telemedicine” and is 
enabled by the use of wireless sensor networks, which transmit medical information of patients 
to the supervisory doctors. Due to the sensitive nature of this information, the principles of user 
identification and identity management are required in that case in order to identify the users 
accessing the system as well as secure the transmission of information (Babar et al., 2011; Luo 
et al., 2010). 
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However, if the securing process failed and the system is attacked, the tamper resistance 
mechanisms should defend the IoT system against malicious activities and unauthorized 
manipulation of data. The remaining concerns address the security of different elements of the 
IoT system including running applications and the digital content of the system. In addition, the 
network connection should only be established if the device is secured. More to this point, 
secure data communication between IoT devices and storage requirements address the 
confidentiality and integrity of the exchanged data and the users’ private information, 
respectively (Babar et al., 2011; Luo et al., 2010). 

 
Figure 3: Security requirements for IoT (Babar et al., 2011) 

2.4.2.3 Security threats and attacks of IoT 
 

Based on the previous discussion these security requirements should be considered accurately 
in the IoT to combat the impact of security threats. From the point of view of Zhang et al. (2015), 
security threats to IoT can be classified to two classes regardless of the type of devices 
connected over the network. The first class is relevant to the security of the traditional network 
of non-IoT devices and it threatens its confidentiality, integrity and availability. Nonetheless, the 
impact and difficulty of these threats in IoT is more intense because of the heterogeneous 
nature of the devices. Thus, IoT security concerns should address the communication between 
heterogeneous objects. 

 
These heterogeneous devices are deployed on a communicating network, in which information 
and communication systems are integrated as an embedded component of the IoT 
environment. Consequently, large amounts of data need to be collected, stored and transmitted 
between IoT devices. This challenge is handled by sensors and acting components integrated in 
the IoT environment, which were not included in the traditional computing systems mentioned 
above. Sensitive data continuously collected by IoT devices at several locations ranging from 
room temperature at home to heartbeats require privacy protection as they might be disclosed 
to malicious attackers, which could lead to invasion of the users’ home privacy or health status. 
Hence, security models must enhance the restricted security capabilities of the resource-
constrained IoT devices to manage the collection and disclosure of enormous amounts of critical 
information to avoid the unauthorized modification of data or the misbehavior of devices (Zhang 
et al. (2015); Gubbi et al., 2013). 
 
Hodo et al. (2016), claim that IoT is a promising paradigm in several applications such as medical 
fields, logistics, automobiles and smart cities. Yet there are many threats in IoT that should be 
considered. One of them is DoS attack, a cyber-attack where the perpetrator tries to hinder the 
availability of the network or system resources to the permitted users by overloading them with 
useless traffic. Another threat is malware. Attackers run disruptive software by exploiting 
weaknesses of the IoT devices platform aiming to destroy the IoT architecture and accessing 
confidential data. This kind of attack may lead to data breach. It is another malicious activity 
harming the IoT environment and users as their personal and confidential information is 
gathered by intruders. Moreover, the design of the IoT devices connected over the network does 
not account for the network security mechanisms. Consequently, the IoT environment is difficult 
to defend against many threats. 
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In most cases the existence of threats in a network increases the probability of malicious attacks. 
Babar et al. (2011) study the potential attacks compromising the security of the IoT 
environment. They are classified into six categories: 
1) Physical attacks are the most difficult type as they target the destruction of hardware which 

is an expensive operation.  
2) Software attacks are the most dangerous as they expose the whole system by making use 

of its design and implementation weaknesses.  
3) Side channel attacks which attackers also seek to launch, and in which they collect 

information generated by encryption devices in order to recognize the encryption or 
decryption key.  

4) Cryptanalysis attacks are used to identify the plaintext, if attackers succeeded to get the 
key. 

5) Network attacks allow attackers to take advantage of the unprotected nature of the sensor 
nodes which discloses the data passing through the network to the public. Accordingly, data 
can be accessed by network intruders.  

6) Environmental attacks can have an adverse effect on the IoT environment. 
 

2.4.3 Anomaly detection in IoT 
 

Previously, the issues and attacks encountered in the IoT environment were presented in detail. 
Attention is now turned to the consequences of these threats and the mechanisms used to 
identify them. Despite the success proved by IoT devices in various applications, the existing 
threats lead to abnormal behavior of the systems and network. For that reason, the need for 
stronger resistance in this domain is increased to secure the IoT environment. However, it is not 
an easy task as IoT devices and sensors operate in an unreliable environment. When sensors 
transmit tampered data, it is an indication of unusual activity occurring on the network that 
needs to be analyzed. The abnormal pattern in data is usually introduced in the findings of a 
data analysis process which is presented in Figure 4 (de Souza et al., 2017). 

 
 Figure 4: Outliers detected and highlighted in a dataset (de Souza et al., 2017:487)  

 
Referring to Alghuried (2017), the heterogeneity of IoT devices and constraints imposed by the 
nature of the hardware prevent implementation of host-based security measures. Thus, the 
need to adopt anomaly detection techniques to secure the IoT devices is emphasized. 
Nonetheless, security mechanisms require energy and numerous resources especially when 
they are deployed in devices with restricted computational power, battery capacity and storage, 
which is the case of IoT devices (Babar et al., 2011). The source of this limitation is the 
characteristics of the wireless sensor network environment including the inability of sensor 
nodes to flexibly react to changes. Therefore, anomaly detection approaches implemented in 
sensor nodes should be lightweight and simple to consume less computational power and 
energy (O’Reilly et al., 2014). 
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While the previous part discussed where anomalies can be detected in IoT systems, this 
subsection focuses on the time and conditions of their detection. Desnitsky et al. (2015) state 
that the deviations in the data, produced by the sensors resulting from malicious actions, are 
detected while the system is running. Detection is performed according to a group of predefined 
criteria and restrictions – referred to as, expert knowledge. Expert knowledge applies specific 
constraints during the system’s running time, considering the previous readings of the sensors, 
the current state of the data in terms of time, source, type, destination and location as well as 
the structure and the operating logic of the monitored system. 
This thesis tries to contribute to the security of IoT by developing an approach to capture 
anomalies in an IoT network. The following chapter evaluates the capabilities and draws on the 
strengths of the intelligent agents to that problem domain. 
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3 Distributed Systems 
 

3.1 Challenges of Distributed Systems 
 

A distributed system is defined as a system where communication takes place between the 
components of hardware or software found in a network of computers. This communication is 
organized through sending and receiving messages (Coulouris et al., 2012). Another 
representation for a distributed system is given by Tanenbaum and Steen (2007). They view it 
as a group of separate components or computers, but users see it as one consistent system. This 
definition indicates that those independent components must function together. While this 
collaboration depends on the development of the distributed system itself, it is kept out of the 
users’ sight. 

 
According to Braubach and Pokahr (2012), developing distributed applications is becoming an 
ongoing necessity. It resulted from using smart devices extensively and trying to connect them 
over several networks. However, developers encounter many challenges when designing and 
implementing these systems. Therefore, they need to decide on a bundle of technologies and 
technical approaches to be used in order to handle and solve these challenges. In addition to 
adopting the applicable technical solution, they need to consider a software paradigm for it, 
which describes the software from a real-world perspective by identifying the components of 
the software and how they communicate. 

 
Before exploring some of the existing systems paradigms, several challenges encountered 
during their development and faced by software engineers will be discussed. Unlike distributed 
systems, developing an individual application requires focusing only on its behavioral aspect. It 
is concerned with developing the software in a way that ensures the intended design, flexibility 
and sustainability. On the other hand, developing distributed systems causes many issues 
illustrated in Figure 5 such as concurrency and distribution as well as non-functional problems. 
Pokahr et al. (2010) view concurrency to provide systems with more computational power. For 
example, it takes place through using multi-core processors and other facilities to enable parallel 
processing. 

 
Figure 5: Applications and paradigms for distributed systems (Braubach and Pokahr, 2012:101) 

 
However, it has many problems such as divergence, deadlock and mutual exclusion. Divergence 
is defined as a loop that never ends. Concurrency enables several executable threats to run at 
the same time concurrently, while deadlock is defined as a state, in which a system waits as its 
required resource is occupied by another system. Therefore, each process is only resumed when 
the resource it needs becomes accessible and not used by another process. Similarly, mutual 
exclusion occurs once two processes are not allowed to exploit the same resource at the same 
time (Agha, 1985). 
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Furthermore, distribution is divided into two aspects: inherent distribution and distribution 
transparency. Inherent distribution means that all the entities of the system such as users, other 
systems and information are naturally spread. In other words, diverse users generate and 
organize various kinds of information which are managed independently by different programs. 
Consequently, this distribution must be transparent. People and other applications should see 
the system as one independent entity regardless of the underlying communication processes 
and resources of its components which are physically distributed (Nadiminti et al., 2006). 

 
Coulouris et al. (2012) have discussed the non-functional issues of distributed systems 
mentioned above. It mainly revolves around the quality of the service. Quality is mostly 
influenced by the reliability, security and performance of the system. They determine whether 
the system can deliver services timely and as intended. Another non-functional problem for 
developing distributed systems is scalability. A system can be scalable in three different ways. It 
can either: increase the number of its users and resources; be a geographical scalable system in 
which users and resources are located at different places; ensure scalability on an administrative 
level by operating across several separate departments or entities (Tanenbaum and Steen, 
2007). 

 
From a similar perspective, a distributed system should be scalable and capable of coping with 
many resources and users simultaneously to enhance performance and availability. Fault 
tolerance is mentioned as an additional non-functional issue of distributed systems. The wide-
spread use of distributed systems and parallel processing may result in network and hardware 
failures that cause fault delays in communication and computation processes (Mishra and 
Tripathi, 2014). 

 
Also, openness and performance improvement are important aspects that should be 
considered. Improving performance of the systems as well as incurring low operating costs is a 
very challenging task. While openness of a distributed system identifies whether the system can 
be further developed and implemented, the extent to which a system can add and share more 
services with other applications indicates its level of openness. It is only enabled by publishing 
the interfaces to make the shared resources accessible and through agreeing on a 
communication technique for all systems (Mishra and Tripathi, 2014). The next section explores 
some solutions used for developing distributed systems that address these challenges. 

 

3.2 Distributed systems paradigms 
 

This section discusses several software paradigms with their limitations to build distributed 
applications, focusing on the concept of intelligent agents, their characteristics and why they 
are useful for developing distributed systems. Also explained is how the agents’ paradigm is 
combined with other technologies and concepts to form a new software paradigm, “Jadex active 
components”, which contributes to the challenges mentioned in section 3.1. 

 

3.2.1 Review of different paradigms 
 

Braubach and Pokahr (2012) suggest paradigms for developing distributed applications. These 
include object, component, service and agent orientation. Each paradigm can tackle one or two 
challenges mentioned in the previous section as shown in Table 1. Object Orientation is used to 
build applications simulating the actual world. It includes Remote Method Invocation to 
coordinate with distributed systems. The component orientation is an extension for the object-
oriented model. They are independent entities that supply a well-defined functionality and also 
manage non-functional features. Another paradigm is service-oriented. It tends to combine the 
business and technical side by using services to perform tasks required for the business process. 
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Agents are self-managing and independent programs that can operate with multiple systems 
and behave in a smart manner. 
 
 
 
 

 
 
 
 
 
 
 

 
Table 1: Contributions of paradigms (Braubach and Pokahr, 2012:102) 

 

As seen in Table 1, the four paradigms are not able to handle concurrency, distribution and non-
functional problems together. Nonetheless, agents are able to tackle the two main functional 
challenges, indicating that the agent paradigm is very promising for developing distributed 
systems. This thesis is built around the idea of “BDI agents”, which consist out of an underlying 
intelligent distributed agents’ network.  The agent-based software paradigm and the idea of 
intelligent agents followed by the “BDI” model will be thoroughly explained in section 3.2.4. 
 

3.2.2 Requirements of software paradigms 
 

Pokahr et al. (2010) cover from a different standpoint some important requirements of the 
software paradigm in order to create distributed systems. They should comply with the software 
engineering principles such as composition or decomposition and reusability. A clear behavior 
should be demonstrated by the software components. The paradigm must provide an 
interaction and communication functionality, for example, through sending and receiving 
messages or exploiting services. This interaction as well as all the entities’ actions should be 
done independently. In addition, it should manage non-functional challenges such as scalability. 

 
Each requirement of the software paradigm is matched from a technical point of view to a 
specific characteristic listed in Figure 6 including structure, interaction and execution. The first 
criteria related to the software engineering principles is targeted by the structure property as it 
covers the mechanism inside the component itself and how it is constructed, whether it is 
composed of or decomposed into several entities. The structure also concentrates on the 
second requirement about the behavior of the software entity. From its name, the third criteria 
are addressed by the interaction property communicating through messages and invoking 
methods. As for the execution feature, it focuses on the fourth and fifth requirement. They state 
how the components are implemented and run in their environment. The runtime phase of the 
components must be done independently since an existing infrastructure must have control on 
the components in order to comply with the main non-functional aspects. 

 
 
 
 
 
 

 
Figure 6: Technical properties of paradigm entities (Pokahr et al., 2010:104) 
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3.2.3 Evaluation of software paradigms 
 

The following software paradigms including active objects and components will be evaluated 
based on the requirements and technical properties presented in section 3.2.2. The third 
paradigm – the software agents’ paradigm – will be discussed in detail in section 3.2.4. 

 

3.2.3.1 Active objects paradigm 
 

An active object is a mechanism for developing concurrent systems. It integrates object-oriented 
programming principles using its own methods, concepts and one individual active thread. This 
thread for each object decreases the complicated concurrency and distribution issue (Clarke et 
al., 2008). It can reduce the coupling between the method caller and callee through 
asynchronous communication. The method calls are managed by a scheduler over each object’s 
thread. Therefore, it can achieve more concurrency in a distributed environment (Johnsen and 
Owe, 2007). These functionalities show that the active object can address the interaction and 
part of the execution property through managing the method call process in an independent 
way by decoupling the caller and callee. Nevertheless, it has limitations regarding the execution 
and structure of the object, so it is not considered a complete paradigm for distributed 
applications. 

 

3.2.3.2 Component-based paradigm 
 

The second paradigm is component-based software. It is created by combining several 
subcomponents following specific component architecture. Each component has an interface 
that serves communicating with other components (Cai et al., 2000). It is defined by Washizaki 
et al. (2003) as an entity composed of many others with interfaces. Interfaces enable users to 
take advantage of the software without understanding its technical implementation. The 
interaction is enabled via messages and method calls. Regarding communication between the 
user and the component, it only exists when the user requires a specific task from the 
component. Thus, they are passive entities that do not function independently. The component 
software includes a management infrastructure that aids in its implementation process in order 
to build flexible and scalable executable applications. Like the active objects, the component-
based concept does not concentrate on how the component should be internally structured but 
unlike the objects paradigm it is considered with the composition of the entities. 

 

3.2.4 Discussion of intelligent agents’ paradigm 
 

This section discusses the intelligent agents’ paradigms in detail. It starts by explaining the 
aspects of an agent system. The “Jadex Active Components” is presented as a framework for 
developing distributed agents. Intelligent agents, their characteristics and other relevant 
concepts are examined. Finally, the BDI model is presented as a model for developing intelligent 
agents. 

 

3.2.4.1 Conceptual idea of agent systems 
 

Another successful paradigm for distributed computing is agent systems. It also represents the 
concurrency aspect in its model. Agents are situated and reactive meaning they observe the 
environment around them and react to any changes. In addition, they are proactive and 
independent as each agent is able to manage its own behavior and goals following its intentions 
and not according to human actions, as opposed to component-based software. Consequently, 
they are eligible to run in a distributed concurrent environment. They are also socially capable 
of interacting with other agents (Yu, 2001). Being autonomous and interactive allows an agent 
to coordinate with other agents and form a multi-agent system. They act using messages on 
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behalf of the users to simulate their ordinary communication process. Figure 7 depicts the 
interaction between an agent and its environment as an on-going process. Referring to the 
independency of systems, an object can manage its state and methods and identify who can 
access them. However, it is not able to control neither its behavior nor its execution after they 
are invoked. On the contrary, the interaction between agents in a multi-agent system is 
performed differently. It is not based on method calls but is represented in form of providing 
and requesting services. It gives agents the chance to decide on providing the service or not so 
they have a full control over the behavior of the system (Wooldridge, 2009). 
 
According to the previous evaluation and Table 1 findings, the discussed software paradigms 
are very powerful, but they still have weaknesses that should be considered. For example, 
none can handle concurrency, distribution and non-functional problems together. This hinders 
the possibility of creating applications that overlap all or just two of the areas (cf. Figure 5). As 
a result, the properties and capabilities of the paradigms were consolidated to a new agents’ 
software paradigm – “Jadex Active Components”. 

 
Figure 7: An agent in its environment (Wooldridge, 2009:16) 

 

3.2.4.2 Jadex Active Components 
 

Building distributed systems is not a simple process. Many complexities such as heterogeneous 
software and hardware as well as communication difficulties should be considered. The existing 
software paradigms can address some of these issues, yet they still have weaknesses. “Jadex 
Active Components” is an approach that combines the properties of the component’s software, 
the active objects and the service-oriented paradigm with agents to strengthen the mechanism 
of building distributed applications (Jander et al., 2015). 

 
Jadex establishes a new paradigm for distributed systems. The agent’s platform used in the 
Jadex environment is organized as follows: the programming language used is Java 
complemented with a specific programming model and framework provided as an execution 
infrastructure. The programming model is an addition to an architecture called Software 
Component Architecture (SCA). SCA components consolidate Service Oriented Architecture 
(SOA) with an object-oriented paradigm. These components interact through services. The 
environment is rapidly changing and therefore needs technologies that can cope with it. 
Therefore, the active components have been added to the SCA in order to change them from 
passive to independent active entities, which is beneficial for them. 

 
In this context the active component is an independent agent. It interacts with its surroundings 
via sensors and reacts based on its observations as depicted in Figure 8. On the other side, the 
SCA component is passive. It simply provides to and makes use of services from other 
components. Moreover, SCA components can be decomposed and linked together through 
required and provided services. Thus, they support composition and service-oriented 
communication of the active components (Braubach and Pokahr , 2012). 
 
 
 

https://scholar.google.de/citations?user=JD8v9fkAAAAJ&hl=en&oi=sra
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Figure 8: Active component structure (Braubach and Pokahr , 2012:103) 

 
After presenting the structure of the active component, its behavior will be introduced. The 
behavior of the active component is composed of the mechanism of the component and the 
service. Additionally, this service has an interface and implementation. The component behaves 
according to its internal or underlying architecture. In other words, it either reacts to a specific 
event or takes the initiative to be proactive and perform an intended task (Pokahr et al., 2013a). 

 
Active components function independently as agents without human intervention and hence 
can reject providing a specific service, unlike objects. Despite that, active components are 
usually programmed to offer the required service. However, if, for instance, another service 
request exists then the execution will be terminated, and the active component will decide on 
the action that should be performed. This process demands asynchronous service interfaces 
controlled with futures. The future is defined as a placeholder that the provider sends to the 
requester as soon as it gets the service call. The provider also places the value of the result in it 
when the execution is completed. During the execution the caller can function normally. 
Afterwards, it is informed of the available result through a callback (Jander et al., 2015). 
 
The Jadex paradigm requires an execution infrastructure in addition to the programming model. 
Braubach and Pokahr (2012) present Jadex platform as the infrastructure for loading and 
executing active components. Furthermore, it enables components to interact and discover 
other components existing in remote platforms. These functionalities are facilitated through the 
component container. It includes the basic modules of the platform, namely the component 
management and messaging module. 

 
The component management serves for starting and stopping the active components. After it 
creates an instance of the component, it allows its provided services to be found and invoked. 
On the other side, the way for publishing the required services depends on how the component 
is configured. As for the messaging module, it identifies each component with an ID to make it 
able to interact by sending and receiving messages. All the available modules are viewed as the 
provided services of Jadex platform. Hence, it is treated as an active component and has all its 
functionalities. This means that the platform’s services are also controlled by asynchronous call 
processing which addresses the concurrency problem. 

 
Referring to Braubach and Pokahr (2012) and as far as this paper is concerned the 
implementation of Jadex platform targets developing distributed systems. This requires 
communication between components dispersed among remote platforms. The awareness 
approach provided by Jadex platform supports this aspect and works as follows. It provides 
different mechanisms to discover remote platforms yet all of them are based on the same idea. 
Figure 9 shows that once a remote platform is detected, a proxy component is created for it on 
the local platform by the awareness management module. The proxy component stands for its 
corresponding remote platform. If the scope of the required service contains remote platforms, 
the proxy components contact a remote management system to start searching for the required 
service on its remote platforms. 
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Figure 9: Jadex platform awareness (Braubach and Pokahr, 2012:112) 

 
An additional property provided by Jadex is a bundle of tools composed of two types: tools for 
modeling and runtime tools. Writing the code of the agents is done using either a Java or an XML 
development environment. The Jadex Control Center (JCC) brings together Jadex runtime tools 
shown in Figure 10. They control the components through a running infrastructure. Each tool has its 
corresponding plug-in. The Starter plug-in lists the existing components and controls their status and 
execution, while the Chat plug-in is responsible for the messaging process and the interaction 
between components. The Debugger aids the developer in observing the execution process step by 
step and inserting breakpoints to identify errors (Pokahr et al., 2010) 

 
Figure 10: Runtime tools 

 
Having discussed Jadex as a framework for creating agents, which provides them with a 
communication platform, the next section will discuss building intelligence into the agents. 
These agents have mental states as they are based on a model called “Belief-Desire-Intention”. 
This model supports the human behavior including the humans’ desires and motivations. A 
review on the BDI approach is given in section 3.2.4.4. 
 

3.2.4.3 Intelligent agents 
 

Based on this analysis the agent’s paradigm has proved its potential in distributed networks. 
Experts claim that its interactivity, self-government and motivation to accomplish its goals are a 
necessity to software developers (Luck, 2005). It is essential therefore to look at it in detail. 

 
As computer systems interact independently over many types of networks, they have required 
new development technologies and techniques that cope with these changes. Consequently, 
software agents, defined as small and independent programs, have been suggested as new 
development paradigms for distributed systems. Additionally, they are easy to handle and use 
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in building complicated systems (Minar et al., 1999). In distributed systems they serve as a model 
for human behavior. They act as autonomous, proactive and reactive programs (Howden et al., 
2001). 

 
Intelligent agents can take rational decisions by behaving proactively as well as reactively at the 
same time. A proactive agent chooses a specific goal and insists on achieving it by selecting the 
suitable required actions. Meanwhile, behavior of the reactive agent is altered based on any 
occurring changes, which indicates its flexibility. Intelligent agents can commit to their decisions 
and show flexibility when changes take place in their surrounding environment. However, when 
taking a decision, intelligent agents must balance between the reactive and proactive principle 
(Winikoff et al., 2001). 

 
According to Martin et al. (2016), the advent of intelligent agents facilitates the management of 
rapidly changing environments by providing intelligent interaction between agents. Intelligent 
interacting agents can serve the users’ needs through simulating the behavior carried out by 
humans in the real world. From the same perspective, intelligent agents are not only able to 
interact with each other but also with the users in order to accomplish their predefined goals. 

 
Due to the agents’ capability of modeling human behavior, they can communicate with users 
and accomplish their goals. Users seek support services that match their needs and preferences, 
are flexible and can interact. They need an automated reasoning technology. However, these 
requirements are difficult to provide due to the rapidly changing, complicated environment and 
time limitations. Therefore, developers aim to combine the human behavior concepts with the 
automated reasoning techniques to build intelligent agents’ systems (Nguyen and Jain, 2009). 

 
These systems can achieve the users’ goals in an interactive, effective and efficient way. The 
new system paradigms not only perform computational tasks, but also enable goals delegation 
and interactive support in a conversational manner. This capability proves that these systems 
can handle the users’ tasks and do not require human intervention. They pay attention to their 
environment instead and react if anything regarding their goal’s changes (Nguyen and Jain, 
2009). 

 
After discussing the ability of the intelligent agents to interact with users and accomplish their 
goals, attention should be drawn to the development of agent-based systems. To build an 
application following this paradigm, one needs an agent’s platform as mentioned in section 
3.2.4.2 to support this. Referring to Winikoff (2005), it is a technology used to build agent 
systems, divided into two components; agent-oriented programming language and a 
framework. The programming language provides the concepts and syntax for creating the 
agents while the framework is necessary for allowing communication between agents through 
sending and receiving messages. 

 
An agent platform should comply with the following features. First, it must be familiar to 
developers. It must be similar or an addition to the already existing languages in order to be 
easily understood and used. It must enable the agents’ integration and interaction with other 
software as well as with other services, databases and graphical user interfaces. The platform 
should be scalable and strong to support large systems and any number of agents reliably and 
efficiently. Most importantly, the platform should include development and debugging tools and 
must be supported by documents. 

 

3.2.4.4 BDI Agents 
 

Several platforms have been introduced in the past years to develop multi-agent systems. 
However, they are not capable of covering the three main requirements of an agent’s platform; 
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openness, middleware and reasoning capabilities. Openness is concerned with linking 
heterogeneous systems over the network. Middleware addresses interoperability and services 
infrastructure. Reasoning capabilities support the decision capabilities of agents through a goal-
oriented approach. The difference between the two previous properties is a motivation for 
adopting the BDI model (Pokahr et al., 2005). This section starts with the concept of BDI and a 
description for the BDI foundation. Then it presents the BDI architecture, design and 
implementation. Finally, the execution model of the BDI reasoning engine is briefly explained. 

 
Jadex programming model is viewed from the inter-agent and intra-agent levels. The inter-agent 
level handles the communication between agents, while the intra-agent level is concerned with 
the internal architecture and implementation of the individual agent. This concept is targeted 
by the BDI reasoning engine supported by the goal deliberation and means-end reasoning. The 
BDI is a model for developing intelligent agents and hence, is based on human behavior and 
actions backed up by philosophical and psychological theories. It analyzes human behavior as an 
intentional stance by introducing the system design as a group of components intending to 
attain specific goals by applying how people think (Pokahr et al., 2013b). 

 
Through following the motivational or intentional stance, BDI agents assume that human 
intentions and desires are the only reason or explanation for human attitudes and actions. This 
type of agent behaves independently according to its desired goal by examining its environment 
via sensors and acting in response to any changes (Castanedo et al., 2006). The BDI model 
concludes these actions rationally from three mental attitudes: beliefs, desires and intentions. 
The agent’s decision of acting is facilitated by a practical reasoning mechanism. First, the agent 
selects several goals it aims to accomplish through a goal deliberation process. Then the means-
end reasoning deals with how they will be attained (Piunti et al., 2008). 

 
BDI agents are defined by their beliefs, goals and plans. In the following representation, design 
and implementation of the three concepts will be presented. According to Braubach et al. (2004) 
beliefs are informational attitudes. They consist of information about the agent’s environment 
and its own status. Beliefs stand for the agent’s perception of the real world. The perceptual 
concept includes only facts placed in a belief base that make up the agent’s knowledge. It serves 
as a source for plans and goals to retrieve valuable information about the agent. This 
information is in the form of a single Java object or a set of objects (Korecko, 2014). 

 
The belief base of the agent is object-oriented to enable flexibility of manipulating classes. The 
beliefs are accessed with their names in order to be able to change, remove or add them. The 
belief base is an active storage because it serves as conditions for executing plans or creating 
goals. Hence, during the execution the reasoning engine takes them as an input and based on 
their changes or satisfaction, the agent may generate an internal event that can terminate a 
plan, drop or create a new goal (Braubach et al., 2005). 

 
Pokahr et al. (2005) gives an overview about goals, the second mental attitude of the BDI agent. 
Goals are the motivational attitudes of the agent that represent its desires. Agents always seek 
to perform actions until the goal is achieved. If it is not the case, the adopted goal should be 
discarded. Like beliefs, goals are stored in a goal base to be reachable for the reasoning entities 
of the agent and for the plans to be aware of the agent’s desires. The agent’s goals are managed 
by a goal life cycle depicted in Figure 11, responsible for monitoring the status of the goal 
whether it is an option, active or suspended. The process runs as follows: once the goal is 
adopted, it is included as an option in the goal base. Afterwards, the settings for the goal 
deliberation determine its current state. The beliefs of the agent identify the validity of the goal 
by a context condition. Therefore, the goal execution is paused if it is invalid. 
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Figure 11: Goal lifecycle (Pokahr et al., 2005:5) 

  
There are four types of goals: achieve, perform, maintain and query goal. The achieve goal is a 
desired world state that is considered reached when a specific condition is met without 
considering the execution of plans. The perform goal is accomplished when a specific plan is 
done regardless of its output. A maintain goal is similar to an achieve goal but it ensures 
preserving the achieved state by continuously executing plans. Hence, it is never dropped until 
it is forced by the programmer himself or by a condition. The query goal’s desired target is 
related to the internal status of the agent. So, like the achieve goal it succeeds when the target 
is presented either through a plan or not (Pokahr et al., 2013b). 

 
Another BDI concept is plans, which stand for the agent’s deliberative or behavioral attitudes. 
They are ways to attain goals and take actions when changes occur such as receiving a message 
or adopting a new goal. The conditions for selecting a plan are included in the plan head. They 
set the criteria for executing the plan and identify the events and goals a plan handles, while the 
body of the plan includes the step by step actions performed by the plan. An agent has several 
distinct plans implemented as Java classes and can be executed by other agents. Agents intend 
to select and execute plans to accomplish goals or sub-goals which create a hierarchy of plans. 
Plans are chosen during a meta-level reasoning deliberation process in which the desired goals 
and their corresponding suitable plans are identified. This process is repeated until the plan is 
executed correctly without delays or errors (Braubach et al., 2005). 

 
The deliberation process mentioned previously has several inputs. These inputs embrace the 
messages coming into and out of the agent, its internal events and the new adopted goals. They 
influence its reaction to any internal changes that occur. This deliberation procedure determines 
whether an event will be added as a new plan to the existing plan library or to the active plans. 
It runs like a cycle as running a plan as shown in Figure 12 can alter the belief base, make the 
agent interact with other agents via messages or also result in building new goals and internal 
events. The agent is mostly viewed as a black box with it inputs and outputs. Nonetheless, its 
properties should be identified to the system in order to construct an agent and start it. First, 
the agent’s beliefs, goals and plans make up its state. The three concepts are mainly 
implemented using Java classes which encompass different Jadex libraries and BDI features. 
Therefore, only the BDI fundamentals of each agent impact its behavior while its reaction and 
deliberation technique are not different among the other agents (Braubach et al., 2003). 
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Figure 12: BDI agent architecture (Braubach et al., 2003:78) 

 
After reviewing the BDI architecture, in the following part the different components used in the 
BDI execution model will be explained. Piunti et al. (2008), claim that the model differentiates 
between processing a goal and executing a plan. Goals stand for the world desires that should 
be accomplished. Plans describe the actions for achieving them. 

 
The three components involved in the process are message receiver, dispatcher and scheduler 
depicted in Figure 13. They all aid the plan selection as it is considered an essential step in the 
reasoning process. Each component has a separate functionality. The message receiver gets new 
messages, considers them as new events and adds them to the event list. The dispatcher takes 
the event list as an input and selects the possible plan for the events. Afterwards, it chooses the 
suitable plans for execution, matches each plan to an event or goal and adds it to the ready list. 
Eventually, the scheduler performs the execution of the plans (Braubach et al., 2004) 

 
Figure 13: BDI execution model (Braubach et al., 2004:5) 

 
Based on this discussion and from a developer point of view, the BDI model is very simple to 
understand yet it provides all the functionalities needed by software engineers to develop an 
agent-based system using the idea of objects. First, the programming model is deploying Java as 
a programming language which is a familiar and easy language. Moreover, a developer can use 
any development environment to create BDI agents, another advantage of the model, in 
addition to the list of functionalities regarding developing distributed agents capable of 
communicating and cooperating (Pokahr et al., 2005). 

 
This thesis aims to evaluate the capabilities of distributed intelligent agents to detect anomalies 
in IoT. Anomaly detection mechanisms require distribution and a level of intelligence to be able 
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to flexibly adapt to any changes in the IoT environment. Therefore, a suitable approach to be 
applied to this problem would be the BDI model, which will be examined later in the 
methodology chapter. 
 

3.3 Research Gap 
 

Based on previous literature review it can be stated that there exists a technology providing 
reasoning abilities as well as advent of a small computing device with powerful capabilities. 
Moreover, several studies have proposed several anomaly detection approaches. However, 
within the scope of the thesis no research was found studying the feasibility of utilizing 
reasoning capabilities of intelligent agents to detect anomalies in IoT systems. Furthermore, 
there is a lack of research in how intelligent agents can transfer raw data transmitted by sensors 
to useful information to make appropriate decisions regarding IoT security. 

 
There are open questions around an optimal architecture for building intelligent agents while 
gaining the most advantages. In that light, a distributed agents’ approach allows different 
architectures including centralized, localized and collaborative reasoning. In the centralized 
reasoning approach the sensor data are channeled to a central service, where it is processed. 
Meanwhile, the local intelligence mechanism avoids transferring data over the network and 
performs the reasoning process as close as possible to the agents. Like the local approach, the 
collaborative reasoning approach takes place locally, but it also makes it possible for the agents 
to interact between them. Therefore, further investigation should be done to identify the 
consequences of adopting either one of those architectural decisions. This thesis covers the 
conceptual idea of the three architectural approaches in the following  chapter. However, it tries 
to contribute in the centralized reasoning domain by implementing a distributed sensor network 
of agents based on the centralized approach. 
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4 Methodology 
 

This chapter will provide a discussion for the chosen design and technologies used for this 
project. The project addresses the security of IoT domain by investigating anomaly detection in 
IoT utilizing distributed intelligent agents. The area of study of this project is the new existing 
computing paradigm that extends traditional computing, such as server computing or office 
computing which do not support the concept of environmental interaction. The new computing 
paradigm used in the IoT domain brings interaction between sensors and the IoT devices. 
Therefore, one needs to understand computing systems in a slightly different way taking 
sensors, which transmit data over the IoT network, into consideration. The new computing 
paradigm raises several issues regarding security of the IoT environment as its scope is different 
and adds aspects not covered by the traditional environment. This thesis studies an approach to 
tackle this security problem through recognizing threats from the transmitted data, which will 
be conceptually presented next. 

 

4.1 Reasons for utilizing “Jadex” framework and the “BDI” model 
 

The project proposes the exploitation of the distributed intelligent agents’ technology, discussed 
in section 3.2.4, to demonstrate the agents’ reasoning capabilities for the purpose of anomaly 
detection. The BDI model, which was examined in section 3.2.4.4, is utilized by Jadex as a 
computational model to provide agents with reasoning capabilities. In addition, Jadex provides 
a framework for the creation of those goal-oriented agents. There are several reasons behind 
choosing Jadex as a paradigm for developing distributed agents. First, the Jadex tool supports 
the development of multi-agent systems by utilizing the strong structure and features provided 
by agent-based systems. This is done through adoption of object-oriented concepts combined 
with Java, as a programming language, which makes the development process smoother as it is 
a familiar programming environment. The Jadex framework facilitates development of agents 
on a distributed level by providing essential capabilities for the agents to communicate. Jadex-
based agents can communicate regardless of their different platforms. Due to the platform 
awareness feature offered by the Jadex platform, an agent on a local platform can search for 
other agents on remote platforms to exchange services with them. 

 
The Jadex platform supports cognitive agents by exploiting the BDI model. In addition to the 
benefits of the Jadex framework, the BDI architecture also has its own characteristics that make 
it a suitable architecture for developing intelligent agents. One of the reasons for selecting the 
BDI model as the basis for this project is that it realizes the creation of rational agents based on 
the concept of mental attitudes. The internal structure and capabilities of the BDI agents are 
determined by the idea of mental attitudes which makes it easier to program, understand and 
deal with the agent-based system as it resembles how humans think and takes decisions on an 
abstract level. Additionally, the BDI agents are aware of their surrounding and the objectives 
they seek to achieve in a rational and goal-oriented manner. This rational thinking leads the BDI 
agents to use its reasoning capabilities by weighing up the available options before performing 
an action. Therefore, they behave based on their knowledge about their environment and the 
goals they are programmed to achieve. 

 

4.2 Limitations of sensor networks 
 

Despite the various uses sensors possess in different areas, they have many limitations that 
should be accounted for. One is restricted resources in terms of memory, processing speed and 
radio range through which they communicate with each other. As a result, they are not capable 
of performing complex computations. In general, based on their internal structure and abilities, 
sensors do a passive job without reacting to changes occurring in their environment. The reason 
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for that is that they are not aware of whether the measured values indicate a normal or 
abnormal behavior.  
 
An area deserving of attention is the role of anomaly detection in recognizing the existence of 
anomalous behavior in a network or system. It could be due to a defective sensor that measures 
functions incorrectly or resulting from an intrusive activity. Most importantly, recognized 
deviations should be analyzed further to preserve the quality and reliability of the data as well 
as the functioning of the network. However, in both cases, the capabilities of a sensor network 
do not enable it to detect abnormal patterns passing through the network traffic or to carry out 
analytical operations to identify the cause of these anomalies and react to it as the sensor 
network lacks intelligence. 

 

4.3 Sensor network of distributed intelligent BDI agents 
 

Distributed agents play a big role in the detection and analysis mechanism through utilizing their 
communication and reasoning capabilities as previously discussed. To clarify the conceptual idea 
of the project and investigate whether the anomaly detection approach can be executed as close 
to the source of data as possible, an explanation for several aspects regarding the development 
of a distributed agents’ network will be provided. Then an example will be given for the 
architecture and basic functionality of a network, consisting of distributed intelligent agents with 
sensing and reasoning capabilities. To simplify the coming conceptual idea, a simplified use case 
focusing on the agents’ implementation will be discussed in the next chapter. 

 

4.3.1 Components of the BDI agent 
 

A BDI agent can differentiate between normal and abnormal behavior based on its beliefs in 
terms of predefined conditions or fixed values for specific measurements set by the owners. The 
beliefs of the BDI agent represent the environment characteristics which are updated after 
performing any action as well as what the agent believes about the world. This information is 
mostly acquired by the agent through observing its environment, is identified according to the 
current state of its world and is built up over time. As for the desires, they stand for what the 
agent seeks to achieve at the end, which is the motivation behind its actions that impacts its 
belief. An agent can have multiple desires, from which it should select only one according to its 
current belief as they might be conflicting. For reaching its goal, the agent selects the suitable 
plan among several options. The following real-life examples will illustrate more the concept. 

 
 

4.3.2 Architectural paradigms of intelligent distributed agents 
 

Intelligent analysis in the sensor network can take place centrally but it can be also done locally. 
Local analysis is facilitated by the emergence of inexpensive, computationally powerful 
computing devices joining all the required capabilities and technologies together. That is why 
these devices can run an intelligent agents’ implementation with attached sensors transmitting 
data to these agents. The local approach makes use of this computational power to enable 
running the anomaly detection and reasoning process closer to the sensor to be able to perform 
the initial steps of reasoning and analysis closer to the device. Consequently, local decisions can 
be taken avoiding the need for centralized analysis service. 

 
In that sense, it is also feasible to take these decisions to a further step by deploying specific 
actors on the agents to be able to act on the environment and control the surrounding devices. 
Utilization of intelligent agents provides two different paradigms for the reasoning process. Each 
agent can function independently and make quick and independent decisions accordingly or it 
can also exchange information with other agents to eventually reach a decision together. 
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Despite the advantages of the local approach, some conclusions cannot be reached by a single 
agent. Therefore, the combination of agents is needed as it provides a broader picture that 
makes many aspects, which are not identified by an individual agent, clearer. Most of these 
conceptual ideas will be applied to the following example illustrating also the reasoning 
capabilities of a BDI agent. 

 

4.3.1 Example for a household sensor network 
 

As shown in Figure 14, there are five distributed BDI agents connected to the same network. 
Each agent’s software is deployed on a small device with a specific type of sensor attached to it 
based on the functionality of the agent. These sensors are deployed on different kinds of IoT 
devices placed in a household. This section presents four different scenarios for detecting 
anomalies in an IoT environment 

 

4.3.1.1 Scenario 1 
 

Imagine the owners of the house are travelling for few weeks and an agent with a motion sensor 
is placed inside the house next to their door to recognize any movements there. During their 
travel period the motion agent is informed of their absence, for example for 2 weeks, so its belief 
is that during this period no one is in the house. The desire of the agent is to keep the intruders 
away from the house and accordingly generates an instant alarm as soon as it receives a motion 
signal to notify the owners of someone in the house. The agent sends a signal to a switch, 
responsible for immediately opening the door of the guarding dogs’ house to terrify the 
intruders. All actions done by the agent in case of the intrusion event represent its intention. 

 

4.3.1.2 Scenario 2 
 

A sensor for measuring humidity of the plants can be used to ensure they are watered each time 
the humidity level in the soil gets below a predefined value to protect them against drying which 
is the agent’s desire. For example, the agent believes that the soil humidity should not exceed a 
specific limit. Accordingly, the agent’s system works as follows: the humidity agent collects the 
humidity measurements every 6 hours to check if the level is acceptable or an unusual humidity 
value is captured, while at the same time its belief is updated with each new value. The plan of 
the agent depends on the measured value. If the humidity falls below the normal value, the 
agent intends to send a signal to a switch that turns on an automated watering machine. 
Afterwards, during the watering process, the agent measures the humidity continuously until it 
reaches the normal level and then switches to another action which is sending a signal to the 
switch to turn the machine off. 

 
Figure 14: Sensor network of distributed intelligent agent 
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5 Implementation 
 

5.1 Use Case Description 
 
This chapter provides a simplified example to limit the scope of the above described network of 
intelligent distributed agents. It illustrates the conceptual use of the BDI agents with their 
intelligent reasoning and sensing power. In the implementation of the project, the architecture 
of the agents is done as simply as possible to be more understandable, by programming each 
agent to be specialized in performing one simple operation. The reason behind this approach is 
to avoid building a huge and complicated program in which all actions are carried out together. 
This is shown with the application of two BDI agents, one connected to a sensor collecting and 
transmitting some data to the other agent, which performs immediate reasoning operations on 
a single event and acts as a central agent. 

 
The actual implementation of the project is like the different possible agents’ architectures 
discussed in the methodology. It comprises two BDI agents, the first connected to a sensor 
transmitting signals responsible for turning on and off a device. These signals are collected by 
the agent, which checks when the signal was received and then stores both information in a 
database. Afterwards, it sends them further to the central agent, which is the one responsible 
for examining whether the device to be secured was opened or closed during the specified time 
range by the authorized user and accordingly reports on the security status of the device to 
inform the user of taking the suitable actions. 

 

5.2 Development environment 
 

In order to build a sensing agent that communicates with a simple reasoning immediate acting 
agent, various hardware and software components were utilized, illustrated by the diagram in 
Figure 15 showing the connections between the components. This section presents the required 
elements for the two agents. Both agents are developed based on the BDI model discussed 
earlier. However, there are several differences between them regarding the implementation, 
programs and hardware used to execute each program, which are mentioned briefly next. 

 
Figure 15: Components Diagram 
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5.2.1 Sensing BDI agent 
 

Looking at each agent separately, the agent software of the sensing agent is deployed on a 
raspberry pi, a small computing device, to which a “CUL device” is attached making it capable to 
send and receive signals. Those received signals are initially sent by an “FS20 sensor” to either 
switch on or off a device. This device, which is to be secured, is plugged into an on/off radio 
switching socket that receives any transmitted signal and switches on or switches off the device 
based on it as shown in Figure 15 and 16. 

 

5.2.1.1 Description of the sensor 
 

One of the components utilized in the environment of the sensing agent is a sensor, operating 
with the FS20 protocol, a wireless protocol that enables communication between devices. It 
provides easy access to the transmitted data over a wireless channel and is widely used for home 
automation purposes. The FS20 device employed here is considered a transmitter of on/off 
signals as it is used manually to emit a signal to the switching socket, connected to the device, 
and to the CUL device as well. The transmission process works as follows: the FS20 device 
generates and transmits signals when triggered by button pressing. In theory this FS20 device 
works also as a light sensor that transmits signals once it detects light. However, this 
functionality is not used here due to the scope of the use case. 

 

5.2.1.2 Transfer of data through the CUL device 
 

Adding to the Jadex software utilized to build the agent, another technology is used to 
implement the functionality of the agent. It is called the serial communication and it is enabled 
by the usage of the CUL device which facilitates the transfer of data between the agent and the 
radio switching socket as well as the sensor as shown in Figure 18. The signal received by the 
agent is depicted by a normal shaped arrow. The signal is transmitted by the sensor using the 
FS20 protocol to the device through the switching socket and read by the CUL device, which 
forwards it further to the agent to be sent to the central agent and saved with its time in the 
database. The sent signal by the agent is illustrated by a dotted arrow and the process runs as 
follows: the agent sends a signal, which is transferred by the CUL device and received by the 
switching socket over a wireless connection to open or close the device. Once the sensing agent 
sends a signal, the signal as well as its time are also transmitted to the central agent and saved 
in the database. This serial connection is established and implemented using Java as a 
programming language via the “RXTX library”. 

 

5.2.1.3 Inserting the data into a database 
 

The other functionality of the sensing agent, which is saving the received or transmitted signals 
with their timings, is enabled by use of the “LAMP stack” (Linux, Apache, MySQL and PHP). It is 
open source software to set up and run web servers and connects the sensing agent to the 
database. To run a database on the Pi, one would not need a “LAMP stack”. Nonetheless, this is 
done to simplify the database administration for convenience reasons. Additionally, the 
utilization of the database has a long-term purpose as the stored data can be processed in the 
future. In fact, when the data is received by the central agent and the reasoning process is 
performed, the transmitted data cannot be accessed anymore. Therefore, the data must be 
stored at a secure place so it can be retrieved when necessary as shown in Figure 18. For 
example, the central agent can access the data collected in a month to evaluate the overall 
security status of the device during this month. 
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Figure 16: Agent sending and receiving signals 

 

5.2.2 Central BDI Agent 
 

The central reasoning agent set up is simpler than the sensing agent as the software runs on a 
laptop without using any extra hardware. Once the signal is received by the central agent it 
identifies whether or not the time of its transmission is within the acceptable range. 
Consequently, it sends a message to the sensing agent to inform it of the security of the device, 
whether it is safe or exposed to any type of security threats.  

 

5.3 Project Implementation 
 

This section details implementation of both agents and how they communicate with each other. 
 

5.3.1 Initialization of both agents’ platform 
 

As described in the previous section, there is a communication between both agents, 
represented by two java classes: ReasoningBDI and CollectingBDI. Although they are distributed 
and running on two different machines, there is a connection between them facilitated by the 
Platform Awareness mechanism provided by Jadex. It allows an agent to search for another 
remote agent and detect that it exists to be able to provide to it or require from it services. 
According to this mechanism, to execute an agent a running platform is needed, which is started 
in the main ( ) method of each agent shown in Figure 17 and Figure 20. The main ( ) method is 
structured as follows: 
 

• PlatformConfiguration and RootComponentConfiguration objects are created to adjust the 
platform to the user’s needs including launching a user interface for the agent, the “Jadex 
Control Center”, which represents the main access point for the available runtime tools, 
shown in Figure 18 and Figure 21, and enabling the awareness mechanism to search for 
remote agents once the agent is started. 

• The configuration object is passed to createPlatform( ) method to start the platform. 

• The IExternalAccess object belonging to the platform is used to retrieve the platform’s  
ComponentManagementService, responsible for starting the agent itself as it takes as an 
input the name of the agent’s class such as ReasoningBDI or CollectingBDI. 

• Identifier of the started agent is retrieved and printed on the console depicted in Figure 19 
and Figure 22. 

• In the main ( ) method of the CollectingBDI agent there is an additional piece of code that 
connects the agent to the CUL device once it is started. 
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Figure 17: Main method of the CollectingBDI 

 
Figure 18: Jadex Control Center of the CollectingBDI 

  
Figure 19: CollectingBDI console 
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Figure 20: Main method of the ReasoningBDI 

 

 
Figure 21: Jadex Control Center of the ReasoningBDI 

 

 
Figure 22: ReasoningBDI console 

 

5.3.2 Interaction between agents 

 

In the header of the JCC there is an identifier for the started agent which is used to search for 
the agent through the IAwarnessManagementService provided by Jadex. Figure 23 lists the 
available agents running on remote platforms including the CollectingBDI identified as 
simba_785, which indicates it is found by the ReasoningBDI identified by jcc@user_0de. Both 
can start to interact. 
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Figure 23: Remote platforms found by the ReasoningBDI 

 

Adding to the CollectingBDI and ReasoningBDI projects forming the agent’s sensors network, 
another project is necessary to facilitate requiring and providing services among them. The 
service project provides a shared functionality between both agents which is a service interface 
shown in Figure 24 that is required by the CollectingBDI and provided by the ReasoningBDI. It 
takes the signal and its time as inputs from the collector and returns a string containing the 
security status of the device from the reasoning agent. The detailed behavior of this service 
and how it is exchanged between both agents will be explained in the next section that covers 
the structure and functionality of both agents.  

 
Figure 24: The interface of the shared service
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5.3.3 Implementation of the sensing agent  

 

The code structure of the sensing agent is an integration between the three different functionalities: 
 

1) The BDI agent features: 
 
For the agent to be recognized as a BDI agent, its class name should end with BDI and an 
@Agent annotation is included before the class declaration. To be able to use a specific service, 
it has to be declared as a required service inside the agent through the @RequiredService 
annotation. This annotation includes a name (analyzeservice) to reference the required service, 
the name of the service interface (IAnalayzeSignal) and multiple arguments to enable using 
multiple instances of the service if needed. Furthermore, the annotation @Binding defines the 
parameters of the service binding that is established by Jadex between the providing and 
requiring agents. Those parameters represent the scope which is set to be able to find the 
service provided by a remote agent and dynamic, set to true, which initiates a new search each 
time the service is accessed by another agent. The agent has one attribute declared as an 
IInternalAccess which refers to the provider of the agent and enables fetching the required 
service as shown in Figure 25. 

 
Figure 25: Declaration of the CollectingBDI 

 
Figure 26 illustrates how the service invocation is created in the context of a BDI agent. As 
soon as the signal is received or sent by the agent, the agent starts to look up the remote 
service and waits for the response, which is the responsibility of the result listener. Once 
the service is found, analyze ( ) method included in the service interface mentioned earlier 
is invoked on the service. It takes as an input the service and when it was transmitted and 
returns a statement printed on the console of the sensing agent. 

 
Figure 26: Agent requesting analyze service 
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2) The Serial Communication feature: 
 

Before requesting the service, the agent either sends or receives a signal. The signal 
transmission is facilitated by the adoption of the serial communication technology. It is 
implemented through two inner classes in the sensing agent, SerialReader and 
SerialWriter as well as method connect ( ) presented in Figure 27, 28 and 29. In the main 
( ) method the connection to the CUL device was established with connect ( ) method, 
which creates a connection to the port of the device and starts the SerialWriter and 
SerialReader. Referring back to the process of sending and receiving signals in Figure 18, 
the SerialReader is responsible for the receiving process. After starting the agent, the 
button of the sensor is pressed to transmit a signal. When the agent starts the reader of 
the CUL device starts as well and it keeps reading any bytes available at the port with its 
InputStream until a complete signal is fetched by the agent, which is known when the 
reader sees a new line in form of /r/n. Afterwards a Date object is created to get the 
current time of the signal, save both information in the database and send them to the 
central agent by requesting the shared service. This functionality is included in method 
run ( ) in the SerialReader found in Figure 30. 

 
The SerialWriter functions in the same way. However, it enables sending signals so the 
data flows in the opposite direction. It writes the stream of bytes representing the signal 
via its OutputStream on the port as Figure 31 shows and once the signal is complete, it is 
transmitted by the CUL device to the switching socket connected to the device. At the 
same time the available information is also stored in the database and received by the 
ReasoningBDI to react on it. 

Figure 27: SerialReader of the CollectingBDI 

Figure 28: SerialWriter of the CollectingBDI 

 
Figure 29: Method connect ( ) of the CollectingBDI 
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 Figure 30: Method run ( ) of the SerialReader  

 
Figure 31: Method run ( ) of the SerialWriter 

3) Storage Feature: 
 
Whether the signal is sent or received, in both cases it is stored in the database. When the 
signal is available at the sensing agent, method insert ( ) illustrated in Figure 32 is called by 
method run ( ). It establishes a connection between the agent and the database called 
activation and then inserts the data in signals table depicted in Figure 33 by executing an 
insertion query. This query includes 3 columns: the source of the signal, which identifies 
whether it came from the writer (sent signal) or the reader (received signal), the signal itself 
and calls method now ( ) that gets the current time. The ID attribute is not included in the query 
as it is incremented automatically. Figure 34 shows some inserted records in table signals. 
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Figure 32: Method insert ( ) of the CollectingBDI 

Figure 33: Schema of the database table 

                
Figure 34: Records from table signals 

5.3.4 Implementation of the reasoning agent 
 

The reasoning agent (ReasoningBDI) serves as the provider of the required service as depicted 
in Figure 35. The agent has a belief of type Boolean that defines its security status which is set 
by default to true at the creation time of the agent. When the shared service between both 
agents is invoked transferring the signal and the time, the Plan SecureDevicePlan of the 
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ReasoningBDI is triggered as defined in the header of the plan in Figure 36. The body of the 
plan is represented by method body ( ) which takes the signal and time as parameters and 
returns a statement to the sensing agent, the caller of the service, indicating whether the device 
is safe or exposed to any threat. This output depends on checking a condition, which is 
performed by the agent that investigates if the current time (target) lies between a particular 
time range (start and end) or not. But first it tests if the end date came before the start date, 
then 24 hours are added to the end as well as the target date to form a proper time range 
occurring on the same day. If this is not the case, it checks immediately if the target date 
occurred after the start date and before the end date, which has four possible options divided 
to two groups. The first group belongs to the date which is within the specified range, while the 
other group is for dates out of the range and draws attention to any possible threat. The four 
options illustrated in Figure 37 consist of: 

 
1) The target date is in range and the device has been already under control. 

Therefore, the reasoning agent outputs: “Device is still under control”. 
2) The target date is in range but the device was not safe before. Hence, the agent sets safe 

to true and returns: “Device is now secured”. 
3) The device has been already safe but the target date is not in range. So safe is set to false 

and the agent outputs: “Device is not secure anymore.” to warn the user against an 
existing abnormal behavior. 

4) The device was not safe and also out of range. Hence, the agent returns: 
“Device is still not secured. Make an action!!” in order to draw the user’s attention to    
take an initiative with the purpose of securing the device. 

 
Figure 35: Declaration of the ReasoningBDI 

Figure 36: Plan of the ReasoningBDI 
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Figure 37: The reasoning conditions of the ReasoningBDI 

 

5.4 Output of running the application 
 

Figure 38 depicts the communication process which takes place between both agents to make 
it clearer. The information flows from the sensing agent to the central agent, whereas the output 
is returned back in the reverse direction. Figure 39, 40 and 41 show the output which appears 
on the console of each agent when the process is completed. In the CollectingBDI, when a signal 
is received, the connection to the database is established, the data is inserted in it and the 
service is required. Eventually, the statement returned by the central reasoning agent is received 
and printed on the terminal. The sending process is performed exactly in the same way. 
Nonetheless, the signal is sent through the terminal as Figure 42 shows. Then it is read from the 
SerialWriter to the CUL device’s port until it reaches the device. At the same time during the 
process, the signal and time which triggered the plan as well as the result of the checking 
condition are printed on the console of the central agent. 

 
Figure 38: Communication process between agents 

 
Figure 39: Output of receiving a signal 
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Figure 40: Output of sending a signal  

 

 
Figure 41: Output console of the ReasoningBDI 

5.5 Discussion 
 

This article aims to assess the capabilities of the distributed intelligent agents in detecting 
anomalies in an IoT environment. The previous implementation makes it clear that it is feasible 
to deploy distributed intelligent agents on a network of IoT systems. According to the output 
presented in section 5.4, an intelligent agent can ensure the security of devices in the sense that 
they are only accessed during the time range specified by the authorized users. It is able to give 
a warning to the user that a suspicious event has occurred or that its device is secured and under 
control. This simple use case is facilitated by the reasoning capabilities provided by the 
intelligent agents, which enable them to keep track of the current security status of the device 
as well as compare the time at which the signal was transferred to the specified start and end 
times by the user. 

 
The major focus was on setting up an environment representing all types of technologies 
including components that collect and transmit data as well as perform sensing and reasoning 
while minimizing the complexity resulting from using multiple agents. The project is able to 
implement a sensing component on resource-constrained hardware and to run a simple 
reasoning agent as a central service. This approach was presented by a simple use case to 
illustrate the conceptual idea behind anomaly detection in IoT networks. It has also proved that 
it is doable to build a network of distributed intelligent reasoning agents to serve this purpose. 

 
Due to the limited scope of this article and the time constraints due to the need to integrate 
several independent technologies together, several aspects could not be covered within the 
scope of the project. First, the network consisted of only two BDI agents while it could have been 
expanded to deploy multiple agents enabling various types of reasoning mechanisms such as 
localized, centralized and collaborative. In addition, the built network adopted only the 
intelligence-based approach on the basis of the centralized reasoning principle. It should have 
also examined other different architectural structures of reasoning systems such as local as well 
as collaborative architectural paradigms to elaborate more on the advantages of distributing 
these agents. Distributed intelligent agents can either operate independently to reach individual 
rational decisions or interact with other agents to solve more complex problem sets, which are 
not recognized by individual acting agents.  
 
The agents built here are the simplest form of BDI agents, having only a belief keeping track of 
the security of the device as well as a plan performing a simple reasoning task. Conceptually, the 
developed intelligent reasoning agent should have a goal indicating the desire the agent aims to 
achieve. Nonetheless, due to a development issue found in the backend system of the “Jadex” 
tool itself, utilized to develop these agents, the reasoning agent built in the use case was only a 
simplified version of a BDI agent. This limitation within the scope of this article prevented further 
investigation of the reasoning capabilities provided by the BDI model. 
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6 Conclusion 
 

This thesis develops a methodology that agents can be utilized in an IoT environment. It also 
contributes in the sense of actually showing with a prototypical implementation that this works. 
The implementation presents a use case, which combines the deployment of low- powered 
devices that have attached sensors with the centralized agents’ reasoning approach. 
Furthermore, IoT applications are facilitated by the emergence of those inexpensive, small yet 
powerful devices. Adding to the useful sensing capabilities of those small devices, they also bring 
all the necessary requirements together for hosting a reasoning agent deployed on a sensor 
network. This proves the feasibility of such an approach, which uses those different components 
and technologies combined with small and inexpensive devices. Moreover, the thesis 
demonstrates that the centralized distributed intelligent agents’ approach is to a great extent 
capable of detecting anomalies in IoT as far as the simple use case proposed in the thesis is 
concerned. 
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