
Knowledge Sharing Article
© 2021 Dell Inc. or its subsidiaries.

AUTODISCOVERY PROXY TO
PROTECT CLOUD RESOURCES

Pablo Calvo
Delivery Specialist
Dell Technologies
Pablo.calvo@dell.com

Claudio Jeniec
Data Protection & Storage Engineer
Uniqs S.A.
Claudio.jeniec@uniqs.com.ar

Rex Torti
Cloud & Infrastructure Engineer
Uniqs S.A.
Rex.torti@uniqs.com.ar

Norman Arteaga
DevOps Implementation Specialist
Uniqs S.A.
Norman.arteaga@uniqs.com.ar

2021 Dell Technologies Proven Professional Knowledge Sharing 2

The Dell Technologies Proven Professional Certification program validates a wide range of
skills and competencies across multiple technologies and products.

From Associate, entry-level courses to Expert-level, experience-based exams, all professionals
in or looking to begin a career in IT benefit from industry-leading training and certification paths
from one of the world’s most trusted technology partners.

Proven Professional certifications include:

• Cloud

• Converged/Hyperconverged Infrastructure

• Data Protection

• Data Science

• Networking

• Security

• Servers

• Storage

• Enterprise Architect

Courses are offered to meet different learning styles and schedules, including self-paced On
Demand, remote-based Virtual Instructor-Led and in-person Classrooms.

Whether you are an experienced IT professional or just getting started, Dell Technologies
Proven Professional certifications are designed to clearly signal proficiency to colleagues and
employers.

Learn more at www.dell.com/certification

Dell.com/certification 3

Table of Contents

Introduction 4

How to build and deploy 5

SW repository 6

Dockerfile example 9

Deployment Steps 10

Service catalog queries 11

Avamar Backup Jobs 11

Architecture - How it Works (Azure use case) 13

Steps description 13

Automatic Discovery 13

Resource List (Tagged Values) 13

Connection secrets 15

Backup control data and data flow 16

Backup catalog data 18

Additional Cloud Provider Scenarios 18

Summary 19

References 20

Disclaimer: The views, processes or methodologies published in this article are those of the

authors. They do not necessarily reflect Dell Technologies’ views, processes or methodologies.

2021 Dell Technologies Proven Professional Knowledge Sharing 4

Introduction

Data protection in the cloud is the practice that has become increasingly challenging as more
companies move to the cloud. The challenge is more complex than ever, as data may be
geographically dispersed over multiple data centers in public, private and hybrid cloud
environments as well as on-premises locations.

This article shows how to use Dell Technologies data protection products to protect any set of
cloud data, discovering them dynamically, "Autodiscovery Proxy To Protect Cloud Resources" is
an effective, integrable, easy to deploy and low cost solution that covers the gap in current cloud
backup solutions. It enables us to recognize tagged objects and learn which of them need some
kind of protection.

Our solution uses a dynamic discovery capability, which allows learning which cloud resource
objects need to be backed up. The solution extracts the objects to be protected from a kind of
inventory learned automatically.

The lifetime of the backed up data can be configured by backup policies defined according to the
chosen backup product, including schedules and administration of long-term retention policies,
data access profiles, lock retention, tiering, deduplication, etc. External schedulers such as Azure
function1 or AWS Lambda services2, among others, can also be used to launch tasks and perform
job controls.

Autodiscovery Proxy To Protect Cloud Resources is implemented in a container technology,
taking advantage its portability, scaling and repeatability and can deployed by DevOps
orchestration tools over Kubernetes3 or others. With this architecture, the solution scenario can
be designed with high availability considerations.

This thin container architecture has a minimal total cost of ownership (TCO). It requires very few
computing, network and storage resources due to the fact that the data is stored in the pre-
existing backup devices; it can even be turned off when not in use to further optimize costs. Once
the container image is created, it can be ported effortlessly in multi-tenant environments.

This proxy only requires a configuration file – just one file! - and allows automated deployment in
minutes since it can be integrated with any orchestration tool. As this is considered another client
for backup applications, it can be integrated into the flow of administration and control of
protection tasks.

Different applications can be protected within the same container called a “multi-purpose”
container. This feature is very useful when the cloud environment is small and does not require
much processing demand.

In the case of advanced configurations, it is feasible to balance the load of the same type of
backup in more than one container to parallelize the sending of the protected data.

As the backup data is stored in Dell Technologies products, i.e. Avamar, NetWorker,
DataDomain, among others, all the options that govern their replication capabilities between
regions, availability zones and hybrid environments, build simpler, faster and more cost-efficient
disaster and data recovery.

Security has not been neglected. If passwords are required to access objects that need
protection, or any other key/value combination, they can be stored and queried from standard

1 Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure
application platform with capabilities to implement code triggered by events occurring in Azure or third
party service as well as on-premises systems (https://azure.microsoft.com/en-us/blog/introducing-azure-
functions/)
2 AWS Lambda is a serverless compute service that lets you run code without provisioning or managing

servers (https://aws.amazon.com/lambda/)
3 Kubernetes is an open-source system for automating deployment, scaling, and management of
containerized applications (https://kubernetes.io/)

https://azure.microsoft.com/en-us/blog/introducing-azure-functions/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions/
https://aws.amazon.com/lambda/
https://kubernetes.io/

Dell.com/certification 5

system vaults (such as Azure Key Vault4 and AWS KMS5, among others) avoiding exposure of
the requested values. It is recommended to generate read-only keys with password rotation.

With our Autodiscovery Proxy To Protect Cloud Resources we have solved demands for dynamic
discovery and backup of various data sources that DevOps environments require using all the
strengths of current backup products.

The backup administrator no longer has to worry about how to ensure data protection every time
new services are configured and started because Autodiscovery Proxy does it in an automated
and efficient way.

It can be deployed to any cloud provider that certifies Dell Technologies backup products (e.g.
NetWorker, Avamar, Data Domain), including Azure, AWS, and GCP.

Please see reference #1 in the Reference section to see a complete demonstration of this
deployment.

How to build and deploy

Figure 1 depicts the components of the solution.

Figure 1 - Deployment flow

4 Azure Key Vault is a cloud service for securely storing and accessing secrets. A secret is anything that
you want to tightly control access to, such as API keys, passwords, certificates, or cryptographic keys. (
https://docs.microsoft.com/en-us/azure/key-vault/general/basic-concepts)
5 AWS Key Management Service (KMS) makes it easy for you to create and manage cryptographic keys
and control their use across a wide range of AWS services and in your applications (
https://aws.amazon.com/kms/)

https://docs.microsoft.com/en-us/azure/key-vault/general/basic-concepts
https://aws.amazon.com/kms/

2021 Dell Technologies Proven Professional Knowledge Sharing 6

Deploy Control Instance (DCI)

DCI is the workspace used to configure images, launch, test, and distribute Docker (or Podman)
containers; it is not a production environment. CPU, memory, and disk space values can be
modified according to sizing; Figure 2 shows a Standard B2s. You can choose the version of
Linux that best fits your needs. Here, we are using Red Hat Linux 8.2.

 Figure 2 - Azure DCI virtual machine

The solution needs a virtual environment that will run a number of containers specialized to
back up and protect different database services (as mentioned earlier)

SW repository

This project uses the following technologies:

● Docker 6 (or Podman7) config files called "dockerfiles"
● JSON files8 with .json extension
● Shell scripts with .sh extension
● ReadMe files with .md extension
● Avamar clients with .rpm extension, DDBoost File System (DDBoostFS) with .rpm

extension, PostgreSQL9 with .rpm extension
● Azure command line -Azure CLI-10 installed from the azure-cli.repo file.
● Certificates to connect to the cloud provider (PEM files with extension .pem11)

6 Docker is an open platform for developing, shipping, and running applications. Docker enables you to
separate your applications from your infrastructure so you can deliver software quickly (
https://docs.docker.com/get-started/overview/)
7 Podman is a daemonless, open source, Linux native tool designed to make it easy to find, run, build,
share and deploy applications using Open Containers Initiative (OCI) Containers and Container Images. (
https://podman.readthedocs.io/en/latest/index.html)
8 JSON (JavaScript Object Notation) is a lightweight data-interchange format (https://www.json.org/json-
en.htm l)
9 PostgreSQL is a powerful, open source object-relational database system that uses and extends the

SQL language combined with many features that safely store and scale the most complicated data
workloads (https://www.postgresql.org/about/)
10 The Azure command-line interface (Azure CLI) is a set of commands used to create and manage

Azure resources (https://docs.microsoft.com/en-us/cli/azure/what-is-azure-cli)
11 Privacy Enhanced Mail (PEM) files are a type of Public Key Infrastructure (PKI) file used for keys and
certificates (

https://docs.docker.com/get-started/overview/
https://podman.readthedocs.io/en/latest/index.html
https://www.json.org/json-en.htm
https://www.json.org/json-en.htm
https://www.postgresql.org/about/
https://docs.microsoft.com/en-us/cli/azure/what-is-azure-cli

Dell.com/certification 7

The content can be downloaded from a public Github repository using standard methods. Its
URL is https://github.com/uniqs-devops/bkp-proxy.git

Repo layout:

├── avamar.19.2-postgresql-azure.dockerfile

├── avamar-PG-Azure-template-Avamar.dockerfile

├── avamar-PG-Azure-template-DDBoostFS.dockerfile

├── avamar-PG-Azure-template.dockerfile

├── dps-setup.json

├── dps-setup.sh

├── README1st.md

├── README-dps-setup.json.md

├── README-dps-setup.md

└── src

 ├── avamar

 │ ├── backup-postgreSQL.sh

 │ ├── resources

 │ └── setup.sh

 ├── azure

 │ ├── azure-cli.repo

 │ └── azurelogin.pem

 ├── ddboostfs

 │ └── boostfs.lockbox

 └── packages

 ├── AvamarServerPackages

 │ └── 19.2

 │ └── Dummy package.avp

 └── DockerEmbebed

 ├── 19.2

 │ ├── AvamarClient-linux-sles11-x86_64-19.2.100-155.rpm

 │ └── DDBoostFS-7.2.0.5-654559.rhel.x86_64.rpm

 ├── 19.3

 │ ├── AvamarClient-linux-sles11-x86_64-19.3.100-149.rpm

 │ └── DDBoostFS-7.2.0.5-654559.rhel.x86_64.rpm

 └── postgresql

 └── pgdg-redhat-repo-latest.noarch.rpm

 dps-setup.json is the unique configuration file, see an example below:

{

 "cloudProvider": "Azure",
 "dockerType": "postgresql",
 "dockerTypeName": "PG",
 "keyVaultName": "keyvault1414",
 "tenantId": "054bb9ef-86b1-4f4e-a843-deb19d532c11",
 "avamar": {
 "useAvamar": "YES",
 "avamarServerName": "avedemo01.internal.cloudapp.net",
 "avamarDomain": "clients",
 "installDir": "dockerclient",
 "avamarVersion": "19.3"

 },
 "datadomain": {
 "datadomainServerName": "ddvedemo01.internal.cloudapp.net",
 "mountType": "DDBoostFS",

https://s3.amazonaws.com/smhelpcenter/smhelp941/classic/Content/security/concepts/what_are_pem_fil
es.htm)

https://github.com/uniqs-devops/bkp-proxy.git
https://s3.amazonaws.com/smhelpcenter/smhelp941/classic/Content/security/concepts/what_are_pem_files.htm
https://s3.amazonaws.com/smhelpcenter/smhelp941/classic/Content/security/concepts/what_are_pem_files.htm

2021 Dell Technologies Proven Professional Knowledge Sharing 8

 "RootBackupDir": "Backup"
 },
 "ddboosfs": {
 "storageUnit": "st-ddboostfs"
 },
 "container": {
 "containerName": "dockerpg-01"
 },
 "azureResources": [
 {
 "type": "PG",
 "resourceType": "Microsoft.DBforPostgreSQL/servers"
 },
 {
 "type": "PG",
 "resourceType": null
 },
 {
 "type": "PG",
 "resourceType": null
 }
],
 "backupTags": [
 {
 "type": "user",
 "value": "bck_user"
 },
 {
 "type": "port",
 "value": "bck_port"
 },
 {
 "type": "server",
 "value": "bck_server"
 },
 {
 "type": "database",
 "value": "bck_database"
 },
 {
 "type": "task",
 "value": "bck_task"
 },
 {
 "type": "secret",
 "value": "bck_secret"
 }
]
}

json file description:

- cloudProvider
``` Azure or AWS or GCP.``` 
- dockerType 
``` PostgreSQL or CosmoDB or resource type to backup.``` 
- dockerTypeName
``` Sort of dockerType``` 
- keyVaultName 
``` Azure Kay Vault name``` 
- tenantId
``` Tenantid``` 
- useAvamar 
``` Use avamar to store backup data``` 
- avamarServerName and datadomainServerName
``` Avamar and Data Domain FQDN.``` 
- avamarDomain 
``` Avamar docker domain, eg. clients``` 
- avamarVersion
``` Avamar version``` 
- mountType 
``` DDBoostFS or NFS``` 
- RootBackupDir
``` DDBoostFS or NFS mount point on container``` 
- storageUnit 
``` Data Domain Storage Unit used to hold data``` 
- containerName
``` FQDN of container used to register this client on Avamar.  
    Add forward and reverse DNS records to DNS Server``` 
- resourceType 
``` Azure resource type to be discovered``` 


Dell.com/certification 9

- backupTags \ Type
``` Type of tag``` 
- backupTags \ Value 
``` Value of type tag``` 


Dockerfile example

A Dockerfile is a text document that contains all the commands a user could call on the
command line to assemble an image12

Sections

Dependencies and basic software install section.

● Cronie package is used if crontab is needed.
● jq13 package is used to process json configuration files.

#!/bin/sh
FROM centos:latest
Install SO packages
RUN yum install -y --setopt=tsflags=nodocs openssh-server \
 && yum install -y --setopt=tsflags=nodocs iproute net-tools initscripts \
 && yum install -y --setopt=tsflags=nodocs jq cronie\
 && yum clean all
workdir /tmp
RUN mkdir /dockerclient

There are some applications to be deployed in the DCI in this scenario, for example:

● Installs PostgreSQL client
● Copies backup-postgreSQL.sh backup script (executes the pg_dump command)
● Installs AZ CLI and copy JSON file
● Installs DDBoostFS client.
● Installs Avamar client package (rpm in this example).
● Copies .avagent file to fix container hostname (Avamar client name).

Copy PosgreSQL repo install package
COPY src/packages/DockerEmbebed/postgresql/pgdg-redhat-repo-latest.noarch.rpm /tmp
Install PosgreSQL client & repo package
RUN yum install -y /tmp/pgdg-redhat-repo-latest.noarch.rpm
RUN yum install -y postgresql
Copy backup script
COPY src/avamar/backup-postgreSQL.sh /dockerclient
RUN chmod 755 /dockerclient/backup-postgreSQL.sh
Copy .pem file
COPY src/azure/azurelogin.pem /dockerclient
Install AZ CLI
RUN rpm --import https://packages.microsoft.com/keys/microsoft.asc
COPY src/azure/azure-cli.repo /etc/yum.repos.d
RUN yum install -y azure-cli
json file
COPY dps-setup.json /dockerclient
Open the SSH port
COPY src/packages/DockerEmbebed/19.2/DDBoostFS*.rpm /tmp
Install DDBoostFS
RUN yum localinstall -y /tmp/DDBoostFS*.rpm
Copy DDBoostFS lockbox file
COPY src/ddboostfs/boostfs.lockbox /opt/emc/boostfs/lockbox/boostfs.lockbox
Copy avamar Client to /tmp for installation
COPY src/packages/DockerEmbebed/19.2/AvamarClient-linux-sles11-x86_64-19.2.*.rpm /tmp
Install avamar client usen RPM as Install Guide procedure
RUN rpm -ivh --relocate /usr/local/avamar=/dockerclient /tmp/AvamarClient-linux-sles11-x86_64-19.2.*.rpm
#Copy .avagent file
COPY src/avamar/.avagent /dockerclient

Ports: We expose the necessary ports for Avamar client, register and start the agent.

12 https://docs.docker.com/engine/reference/builder/
13 jq is a lightweight and flexible command-line JSON processor (https://stedolan.github.io/jq/)

https://docs.docker.com/engine/reference/builder/
https://stedolan.github.io/jq/

2021 Dell Technologies Proven Professional Knowledge Sharing 10

#open the SSH port
EXPOSE 22
#Avamar Client inbound ports
EXPOSE 28002
EXPOSE 30001
EXPOSE 30002
#Avamar Client outbound ports
EXPOSE 53
EXPOSE 123
EXPOSE 443
EXPOSE 3008
EXPOSE 8105
EXPOSE 8109
EXPOSE 8181
EXPOSE 8444
EXPOSE 27000
EXPOSE 27001
EXPOSE 29000
EXPOSE 30101
EXPOSE 30102
#auto start Avamar services
COPY src/avamar/setup.sh /dockerclient
RUN chmod 755 /dockerclient/setup.sh
RUN /dockerclient/setup.sh

We leave the agent up

Cleanup /tmp folder, agent start and Configuration persist
RUN rm -f /tmp/*.rpm
ENTRYPOINT mount -a && [-f /etc/init.d/avagent] && /etc/init.d/avagent start && /bin/bash

Deployment Steps

Steps # 1 and # 2 are manual configurations to download Project code and enable Data Domain
access through DDboost File System. Step # 3 will be complete using the dps-setup.sh script.

1. Download code from GitHub repo14:

sudo dnf install git
git clone https://github.com/uniqs-devops/bkp-proxy.git

2. Requirements when use DDboostFS

a. Create DD Boost user (Data Domain Admin Console - sysadmin access or similar is
required)

 user add <DDBoost user> role user
 user password aging show
 user password aging set <DDBoost user> max-days-between-change 99999

b. Create storage unit (Data Domain Admin Console - sysadmin access or similar is
required)

 ddboost storage-unit create <storage-unit name> user <DDboost user>

c. Install DDBoostFS in the Data Control Instance (DCI)

sudo yum localinstall -y src/packages/DockerEmbebed/<version>/DDBoostFS-<version>.rhel.x86_64.rpm

DDBoostFS is used to generate DDBoostFS lockbox.

14 Git is a fast, scalable, distributed revision control system with an unusually rich command set that
provides both high-level operations and full access to internals (https://git-scm.com/docs/git)

https://github.com/uniqs-devops/bkp-proxy.git
https://git-scm.com/docs/git

Dell.com/certification 11

d. Create a lockbox file (DCI side)

sudo /opt/emc/boostfs/bin/boostfs lockbox set -u <DDboost user> -d <Data Domain> -s <storage-
unit>

3. Setup Procedure

a. Run dps-setup.sh -s to setup the DCI environment.

b. Run az ad sp create-for-rbac to create cert (.pem) file. Please run before 'az

login' to set up account if you are not logged in yet.

az ad sp create-for-rbac --name 'PaaSBackup' --create-cert; mv ~/*.pem
src/azure/azurelogin.pem

c. Run dps-setup.sh -p to prebuild dockerfile.

d. Run dps-setup.sh -b to create a new docker image.

e. Run dps-setup.sh -d <hostname> to deploy a new contanier.

f. Configure an Avamar policy backup as usual.

dps-setup.sh features:

● Install packages used by this DCI.

● Read json file keys to populate the dockerfile used to create docker images.

● Build a Docker image.

● Install Docker container on host, Kubernetes or Openshift

dps-setup.sh Usage:

dps-setup.sh -h

Please type '-s | --setup' to Setup or '-p | --prebuild' to Prebuild or '-b | --build' to Build or '-d | --deploy' to Deploy

 Reference

 -s | --setup to setup environment
 -p | --prebuild to complete files
 -b | --build to create a docker images
 -d | --deploy --host <hostname> to run a new container on host

Service catalog queries

See sections “Automatic Discovery” and “Resource List (Tagged Values)”

2021 Dell Technologies Proven Professional Knowledge Sharing 12

Avamar Backup Jobs

In this example we will use Avamar as backup software to make our backups although we could,
with a few modifications in the project, use NetWorker, NetBackup, Commvault or any other
product.

To schedule a backup task, you need to create a Policy which will contain the following:

• Members: They are the resources to protect. Figure 3 depicts “dockerpg-01” which

corresponds to the hostname of the Docker container that dumps the PostgreSQL

database leaving its data in a Storage Unit of Data Domain using the DDboost File System

(DDBoostFS) client.

• Dataset: See section “Backup catalog data”.

• Schedule: The execution plan of the backup task. External planners can also be used

instead of Avamar to launch the job.

• Retention: Sets the lifetime of the information within the catalog. It is the period during which
the backup records will exist to perform a restore of the information.

 Figure 3 - Avamar Policy Summary

Dell.com/certification 13

Architecture - How it Works (Azure use case)

Figure 4 shows the information flow of the whole solution when executing a PostgreSQL
backup.

Figure 4 - How Autodiscovery Proxy to Protect Cloud Resources works

Steps

Automatic Discovery

Resource List (Tagged Values)

We are going to read the resourceType key inside azureResources to learn what kind of
resources we’ll search in the Azure subscription to which we have logged in. az resource list --
resource-type <ResourceType>15 is used to discover the Azure resources.

Once all resources were found we look for their tags16 to obtain the properties required to
perform the backup. If there are no tags no, there are no backups due to a lack of information.

Resource and tag names are “learned” from the JSON file configured at the beginning of the
project.

All assets found and their properties will be stored together in the swoconfig.tmp file to be
processed sequentially later.

RESOURCES=`jq '.azureResources[] | select(.type=="PG" and .resourceType != null)|.resourceType' \
$ConfigDir/dps-setup.json | sed 's/"//g'`
SERVICE_TYPE=`cat $ConfigDir/dps-setup.json | jq -r '.dockerType'`
SERVER_TAG=`jq '.backupTags[] | select(.type=="server")|.value' $ConfigDir/dps-setup.json | sed 's/"//g'`

15 List Azure resources (https://docs.microsoft.com/en-us/cli/azure/resource?view=azure-cli-
latest#az_resource_list)
16 Used to quickly locate resources associated with specific workloads, environments, ownership groups,
or other important information (https://docs.microsoft.com/en-us/azure/cloud-adoption-
framework/decision-guides/resource-tagging/?toc=/azure/azure-resource-manager/management/toc.json
)

https://docs.microsoft.com/en-us/cli/azure/resource?view=azure-cli-latest#az_resource_list
https://docs.microsoft.com/en-us/cli/azure/resource?view=azure-cli-latest#az_resource_list
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/decision-guides/resource-tagging/?toc=/azure/azure-resource-manager/management/toc.json
https://docs.microsoft.com/en-us/azure/cloud-adoption-framework/decision-guides/resource-tagging/?toc=/azure/azure-resource-manager/management/toc.json

2021 Dell Technologies Proven Professional Knowledge Sharing 14

DATABASE_TAG=`jq '.backupTags[] | select(.type=="database")|.value' $ConfigDir/dps-setup.json | sed 's/"//g'`
TASK_TAG=`jq '.backupTags[] | select(.type=="task")|.value' $ConfigDir/dps-setup.json | sed 's/"//g'`
SECRET_TAG=`jq '.backupTags[] | select(.type=="secret")|.value' $ConfigDir/dps-setup.json | sed 's/"//g'`

if [-f ${ConfigDir}/swoconfig]; then rm -rf ${ConfigDir}/swoconfig; fi
for resource in $RESOURCES
do
 az resource list --resource-type $resource -o json > /tmp/az.json
 echo $SERVICE_TYPE >> ${ConfigDir}/swoconfig.tmp
 for i in $TASK_TAG $SERVER_TAG $DATABASE_TAG $USER_TAG $SECRET_TAG
 do
 jq '.[].tags' /tmp/az.json -r | grep $i | awk {'print $2'} | sed 's/"//g' | sed 's/,//g' \
 >> ${ConfigDir}/swoconfig.tmp
 done
 paste -sd " " ${ConfigDir}/swoconfig.tmp > ${ConfigDir}/swoconfig; rm -f \
 ${ConfigDir}/swoconfig.tmp
done
 paste -sd " " ${ConfigDir}/swoconfig.tmp > ${ConfigDir}/swoconfig; rm -f \
 ${ConfigDir}/swoconfig.tmp
done

Figure 5 shows an Azure PostgreSQL configuration resource called dbserver1414. Note that
JSON keys are not needed since this resource is dynamically discovered.

Figure 6 shows the tags configured for Azure PostgreSQL. These keys correspond to the
backup Tags and type/value entries of the JSON file.

Figure 5 - Azure PostgreSQL configuration overview

Figure 6 - Resource tagging

Dell.com/certification 15

1. Connection secrets

We are using the vault mechanism to avoid password exposure. Vault allows separate
responsibilities regarding the definition of access and use of the information.

Figure 7 shows the Key vault keyvault1414 that matches the keyVaultName key-value.
keyvault1414 contains the secret1414 entry (Figure 8) that matches the tag key bck_secret
configured in the PostgreSQL resource shown previously.

Figure 7 - Azure Key vault configuration overview

Figure 8 - Secret configuration

Example script to get security token17. The code shown below gets a token using Azure
Instance Metadata Service (IMDS) endpoint via HTTP. The address (169.254.169.254) used is
the managed identities for Azure resources endpoint for the Instance Metadata Service.
After that token is recovered we consult the secret to bring us the required password.

KeyVault=`cat dps-setup.json | jq -r '.keyVaultName'`
cat ${ConfigDir}/swoconfig | while read linea

17 Based on original script provided by SoftwareOne

2021 Dell Technologies Proven Professional Knowledge Sharing 16

do
 set -a $linea " "
 if ["${1::1}" != "#"] ; then
 ERROR=0
 echo !!!!! Processing token from Keyvault !!!!!

response=$(curl 'http://169.254.169.254/metadata/identity/oauth2/token?api-version=2018-02-
01&resource=https%3A%2F%2Fvault.azure.net' -H Metadata:true -s)

 if [${response:2:5} == "error"]; then
 echo " ERROR 001 Getting token from KeyVault "
 ERROR=1
 break
 fi

access_token=$(echo $response | python3 -c 'import sys, json; print (json.load(sys.stdin)["access_token"])')
 echo !!!!! Processing value from Keyvault !!!!!

response=$(curl https://${KeyVault}.vault.azure.net/secrets/$6?api-version=2016-10-01 -s -H "Authorization: Bearer
${access_token}")

 if [${response:2:5} == "error"]; then
 echo " ERROR 002 Obtaining key value from KeyVault "
 ERROR=2
 break
 fi

pass=$(echo $response | python3 -c 'import sys, json; print (json.load(sys.stdin)["value"])')

fi
done < ${ConfigDir}/swoconfig

Backup control data and data flow

The Docker container has the following components installed inside:

● An Avamar client (we could use other software if necessary).
● A DDBoost File System client (we could configure data dumps to NFS if necessary to

avoid DDBoostFS).
● An Azure client to discover Azure resources.
● A PostgreSQL client used to extract the data from the chosen database (or a MySQL

client to back up MySQL database and so on).

This container is registered in Avamar as a client, enabling backup administrators to work with
this like a “regular” client.

Figure 9 show that "dockerpg-01" client has been registered in the domain "/clients".

Figure 10 shows that “dockerpg-01” client has been included in a backup policy.

Figure 9 - Avamar container client configuration

Dell.com/certification 17

Figure 10 - Avamar container policy configuration

This part of the code shown below dumps the data contained in the PostgreSQL database to
the destination indicated by the datadomain.RootBackupDir key of the JSON configuration file.
Note that the access key is not exposed at any time

RootBackupDir=`cat dps-setup.json | jq -r '.datadomain.RootBackupDir'`
ServiceBackupDir=${RootBackupDir}/$SERVICE_TYPE
BackupDir=${ServiceBackupDir}/backups
cat ${ConfigDir}/swoconfig | while read linea

do
set -a $linea " "
PGPASSWORD=${pass} pg_dump -Fc -v --host=$3 --username=$5 --dbname=$4 -f ${BackupDir}/${2}.dump
fi
done < ${ConfigDir}/swoconfig

pg_dump is the PostgreSQL dump utility 18
Figure 11 shows the configuration of the Storage Unit of the Data Domain used to store the
data. This data will be stored in the mtree associated with this SU which differs from the
Avamar mtree.

The Avamar backup task is executed to catalog this backup information. Due to the Data
Domain global deduplication feature, data is not rewritten at the time of backup execution.

 Figure 11 - Data Domain storage unit configuration

18 pg_dump is a utility for backing up a PostgreSQL database (https://www.postgresql.org/docs/9.1/app-
pgdump.html)

https://www.postgresql.org/docs/9.1/app-pgdump.html
https://www.postgresql.org/docs/9.1/app-pgdump.html

2021 Dell Technologies Proven Professional Knowledge Sharing 18

Backup catalog data

Figure 12 shows the configured path to which Avamar will go to read the dump files.

Figure 13 shows the user-configured script stored inside of the container. This script does:

● Automatic Discovery of tagged resources.
● Password recovery from the defined vault.
● Backup data dump.

Figure 12 - Folder to backup

Figure 13 - User-defined script configuration

Additional Cloud Provider Scenarios

The architecture that has been explained in this article can be applied to different cloud providers,
such as Google Cloud Platform and Amazón Web Services.

The main difference between the case depicted is the way to interact with the deployment of the
VM and their target resources to be backed up.

The tools to access those resources are the AWS client and the Google Cloud Platform SDK.
Resources from those platforms are compute, keyvaults and access to the API to read the
resources to be protected.

In summary a container platform hosted on a Virtual Machine or a Container Platform like
Kubernetes or Openshift can be used to configure the functionalities provided by this
autodiscovery backup proxy.

Dell.com/certification 19

Summary

The main features of this solution are the portability and flexibility of its configuration. As a
containerized system, it can be deployed with DevOps methodologies.

The architecture can be connected to different sources of traditional backup providers,
customizing and configuring the backup clients. It also provides the benefit of working with Data
Domain systems, physical (on prem) or virtual, to get the best deduplication and performance.

This proxy only requires a configuration file and enables automated deployment in minutes since
it can be integrated with any orchestration tool on the market. It can be integrated with virtually
all current technologies that cloud providers offer as a service, including databases (MySQL,
PostgreSQL, Cosmos DB) and blob storage, among others.

Like a small resume we can group the characteristics of our proxy into four groups that relate to
integrations, infrastructure, deployment and costs and in each of these groups we will find the
following differentiators:

INTEGRATION

1. Dell Technologies Data Protection Solutions Integration capability.
2. Backup & restore integration to data sources.
3. Any cloud dataset that can be discovered and accessed by Rest API.

INFRASTRUCTURE

4. Container and virtualized infrastructure.
5. Orchestrated on Kubernetes or similar.
6. Cloud platforms: Azure, AWS, GCP, DO.

DEPLOYMENT

7. One parameter file to config.
8. Automated deployment.
9. Replication between cloud providers.

COSTS

10. Low Total Cost of Ownership (TCO).

2021 Dell Technologies Proven Professional Knowledge Sharing 20

References

1. Video demo https://youtu.be/isaHN4K6Quk
2. Code repository https://github.com/uniqs-devops/bkp-proxy.git
3. Leveraging Avamar for File Level Backup of apps running on Kubernetes

https://github.com/cn-dp/K8s-Avamar
4. Data Protection: Avamar, NetWorker, Data Domain, RecoverPoint, PowerProtect, CSM

https://nsrd.info/blog/2019/03/05/proof-of-concept-docker-with-boostfs/
5. Azure managed identities https://docs.microsoft.com/en-us/azure/active-

directory/managed-identities-azure-resources/how-to-use-vm-token
6. Azure to AWS map: https://itnext.io/azure-to-aws-map-70d4c56f55a7
7. Google Cloud vs Azure Features Comparison: https://kinsta.com/blog/google-cloud-vs-

azure/
8. Cloud vendor products

a. Amazon AWS: https://aws.amazon.com/products/
b. Google Cloud Platform (GCP): https://cloud.google.com/products/
c. Microsoft Azure: https://azure.microsoft.com/services/

https://youtu.be/isaHN4K6Quk
https://github.com/uniqs-devops/bkp-proxy.git
https://github.com/cn-dp/K8s-Avamar
https://nsrd.info/blog/2019/03/05/proof-of-concept-docker-with-boostfs/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-to-use-vm-token
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-to-use-vm-token
https://itnext.io/azure-to-aws-map-70d4c56f55a7
https://kinsta.com/blog/google-cloud-vs-azure/
https://kinsta.com/blog/google-cloud-vs-azure/
https://aws.amazon.com/products/
https://cloud.google.com/products
https://azure.microsoft.com/services/

Dell.com/certification 21

Dell Technologies believes the information in this publication is accurate as of its publication date.
The information is subject to change without notice.

THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” DELL TECHNOLOGIES
MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO
THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Use, copying and distribution of any Dell Technologies software described in this publication
requires an applicable software license.

Copyright © 2021 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC,
Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks
may be trademarks of their respective owners.

	Autodiscovery_Proxy_To_Protect_Cloud_Resources_cover
	Autodiscovery_Proxy_To_Protect_Cloud_Resources_needs cover page

